U t: | BMPC ASSEMBLER LANGUAGE AND PROGRAMM NG, Peter Abel

CHAPTER 8

Screen Processing 1:

Basi ¢ Feat ures

oj ective: To cover the requirenents for displaying
informati on on a screen and accepting input froma keyboard.

| NTRODUCTI ON

Up to this point, prograns have defined data within an instruction operand
(imediate data) or initialized in the data area. The nunber of practica
applications for prograns that process Only defined data is few i ndeed.
Most prograns require input data froma keyboard, disk, or nbdem and
provide answers in a useful format on a screen, printer, or disk. Data for
screen and keyboard is in ASC | fornat.

The INT (Interrupt) instruction perfornms input and output. There are
various requirenments for telling the systemwhether processing is to be

i nput or output, and on what device. This chapter covers basic requirenents
for displaying information on a screen and for accepting input froma
keyboard.

You can performall required screen/ keyboard operations by the use of an
INT 1 OHinstruction that transfers control directly to BIOS. However, to
facilitate sone of the nore conpl ex operations, there is a higher level of
interrupt, INT 21H that first transfers control to DOS. For exanple, input
froma keyboard may require a count of characters entered, a check agai nst
a maxi mum nunber of characters, and a check for the return character. The
DOS I NT 21H operation handl es much of this additional processing and then
transfers automatically to BICS.

The material in this chapter is suitable for both nmonochrome (bl ack and
white, BW and color video nonitors. Chapters 9 and 10 cover nore advanced
screen handling features and the use of color

THE | NTERRUPT | NSTRUCTI ON: | NT

The INT instruction interrupts processing, transfers to DOS or to BICS for
specified action, and returns to the programto conti nue processi ng Mst
often, an interrupt is to performan input or output operation A
interrupts require a trail for exiting fromyour programand for returning
For this purpose, INT perfornms the follow ng:

Decrenents the stack pointer by 2 and pushes the flags regi ster onto the
st ack.

Clears the TF and | F fl ags.

Decrenents the stack pointer by 2 and pushes the CS regi ster onto the

st ack.

Decrenents the stack pointer by 2 and pushes the instruction pointer onto
t he stack.

Causes the required operation to be perforned.

Pops the registers off the stack and returns to the instruction follow ng
t he | NT.

This process is entirely automatic, and your only concern is to define a
stack segment | arge enough for the necessary pushing and poppi ng.

The two types of interrupts that this chapter covers are Bl CS operation |NT
10H for screen and keyboard processing and DOS operation INT 21 H for

di spl ayi ng out put and accepting input. For the latter, operations use what
are known as function calls to request an action Dependi ng on requirenents,
exanpl es use both INT 10H and I NT 21H

SETTI NG THE CURSOR

The screen is a grid of addressable |ocations at any one of which the
cursor can be set. A typical video nonitor, for exanple, has 25 rows
(nunbered 0 to 24) and 80 colums (nunbered 0 to 79). Some exanpl es of
cursor locations follow

Deci mal For mat Hex For mat
Locati on Row Col umm Row Col umm
Upper left corner 00 00 00 00
Upper right corner 00 79 00 4F
Center of screen 12 39/ 40 0oC 27/ 28
Lower |eft corner 24 00 18 00
Lower right corner 24 79 18 4F

Features of the INT 1 CH instruction include setting the cursor at any
| ocation and clearing the screen. The follow ng sets the cursor to row 05
and colum 12:

MOV AH, 02 ; Request set cursor

MOV BH, 00 ; Screen #O

MOV DH, 05 ; Row Cb

MOV DL, 12 ; Col um 12

INT 10H ; Interrupt -- exit to BICS

The value 02 in the AH notifies INT 10H to set the cursor. Row and col um
nmust be in the DX register, and screen (or "page") nunber, normally O, is
in the BH The content of the other registers is not inportant. To set row
and col umm, you could al so use one MWV instruction with an i nmedi ate hex
val ue as

MoV DX, 050CH ; Row 5, colum 12

CLEARI NG THE SCREEN

Pronpts and commands stay on the screen until overwitten or scrolled off.
When your programstarts executing, you may want the screen cleared. You
can dear beginning at any | ocation and endi ng at any hi gher nunbered
location. Insert the starting row colum in the DX, the value 07 in the BH

and 0600H in the AX. The following clears the entire screen:

MOV AX 0600H ; AH 06 (scroll), AL 00 (full screen)
MOV BH, 07 ;Normal attribute (black & white)
MOV CX, 0000 ; Upper left row col
MOV DX 184FH ; Lower right row col
INT 10H ;Interrupt -- exit to BIOS
The value 06 in the AH notifies INT 10H to scroll. This operation scrolls a

full screen to blank; the next chapter describes scrolling in nore detail.
If you mstakenly set the lower right |ocation higher than hex 184F, the
operation waps around the screen and clears sone |ocations tw ce. Although
the action causes no harmon nono screens, it nmay cause a serious error on
sone col or nonitors.

SCREEN AND KEYBOARD CPERATI ONS: ORI G NAL DOS

A programoften has to display nessages indicating conpletion or errors
detected and pronpts to a user requesting data or action to take. W will
first exam ne the nethods for original DOS versions, and | ater exam ne the
ext ended nethod introduced by DOS 2.0. The original DOS operations work
under all versions, although the DOS manual reconmends use of the extended
operations for new devel opnent. The di splay operation for original DOS is a
l[ittle nore involved, but keyboard input is easier to use because of its
built-in checks.

DI SPLAYI NG ON THE SCREEN. ORI G NAL DCS

Di spl ayi ng under original DOS requires defining a pronpt nessage in the
data area, setting the AHregister to 09 (a DOS function call), and issuing
a DOs INT 21H instruction. The operation recogni zes the end of a nessage by
a dollar sign ($) delimter, as shown next:

NAVPRVP DB ' Cust oner name? ', '$
MOV AH 09 ; Request di spl ay
LEA DX, NAMPRWP ; Load address of pronpt
INT 21H ; DOS i nterrupt

You can code a dollar sign delimter imediately followi ng the pronpt as
just shown, inside the pronpt as 'Custoner nane? $', or on the next line as
DB '$'. The effect, however, is that you can't use this operation to
display a $ character on the screen. Also, if you omt the dollar sign at
the end of the display string, the operation displays characters from
menmory until it finds one - if any.

The LEA instruction |oads the address of NAMPRWP in the DX to enable DCS to
|ocate the information that is to display. For the actual nmenory address,
LEA | oads the of fset address of NAMPRMP, and DOS uses the address in the DS
regi ster plus the DX (DS: DX).

PROGRAM DI SPLAYI NG THE ASCI E CHARACTER SET

Most of the 256 ASCI| characters are represented by a synmbol that can
di splay on a video screen. Hex 00 and FF have no synbol and display as
bl ank, al though the true ASCI| bl ank character is hex 20.

The COM programin Figure 8-1 displays the entire range of ASCI-
characters. The programcalls three procedures: B10CLR, C OSET, and

D 0Dl SP. B10OCLR clears the screen and A OSET initializes the cursor to

00,00. D ODI SP displays the contents of CTR, which is initialized to hex
00 and is successively incremented for each display until reaching hex FF.

page 60, 132
TI TLE ALLASC (COVM Display ASCl| characters 00-FF
CODESG SEGVENT PARA ' Code'
ASSUME CS: CODESG, DS: CODESG, SS: CODESG, ES: NOTHI NG
ORG 100H
BEGQ N JMP SHORT MAI'N
CTR DB 00,’$
; Mai n procedur e:
MAI N PROC NEAR
CALL B10OCLR ; Clear screen
CALL d OSET ; Set cursor
CALL D1oDI SP ; Display chars
RET
MAI' N ENDP
; cl ear screen:

B10CLR PRCC
MOV AX, 0600H
MOV BH, 07
MOV CX, 0000 ;upper left location
MOV DX 184FH ; Lower right location
INT 10H
RET

B10CLR ENDP

; Set cursor to 00, 00:

d OSET PRCC
MOV AH 02
MOV BH, 00
MOV DX, 0000
I NT 10H
RET
d OSET ENDP
; Di splay ASCI| characters:

D10DI SP PRCC
MOV CX, 256 ;lnitialize for 256 iterations
LEA DX, CIR ;lnitialize address of count
D20:
MOV AH 09 ; Display ASCI| char
| NT 21H
I NC CIR ;I ncrenent count
LOOP D20 ; Decrement CX, loop if nonzero
RET ; Term nate
D10DI SP ENDP

CODESG ENDS
END BEG N

Figure 8-1 Displaying the ASCI|I Character Set.

A problemis that the dollar synbol does not display and the characters
bet ween hex 08 and hex OD, which are special "forns control characters" for
backspaci ng and so forth, cause the cursor to nove Suggestion: Reproduce

the programas it stands, assenmble it, link it and convert it to a COM
file. To run, enter its nane, such as B: ASC|.COM

The first displayed line begins with a blank character (hex 00) two "happy
faces" (hex Ol and 02), and then a heart, a dianond, and a club (hex 03,
04, and 05). Hex 07 causes the speaker to sound. Hex 06 woul d have been a
spade but the control characters hex 08 through OD erased it. In fact, hex
OD caused a "carriage return" to the start of the next Iine. The nusi cal
note is hex OE. The characters above hex 7F include graphics synbols.

You can change the programto bypass the control characters. The follow ng
i nstructions bypass all characters between hex 08 and OD; you nmay want to
experinment with bypassing only, say, hex 08 (backspace) and 0D (carriage
return).

cw CTR OBH ; Lower than OB?
JB D30 ; Yes -- accept
Ccw CTR ODH ; Lower / equal OD?
JBE D40 ; Yes -- bypass
D30:
MOV AH, 40H ;Display < 08 and > OD
INT 21H
D40:
INC CIR

ACCEPTI NG | NPUT FROM THE KEYBOARD: ORI G NAL DOCS

The procedure to accept data froma keyboard is simlar to that for

di spl ayi ng output. For input using original DOS, the input area requires a
paraneter |ist containing specified fields that the | NT operation is to
process. First, the interrupt needs to know t he maxi num |l ength of the input
reply. The purpose is to warn users who key in a reply that is too |ong;

t he operation sounds the speaker and does not accept additional characters.
Second, the operation returns the length in bytes of the actual reply into
the paraneter I|ist.

The followi ng defines a paraneter list for an input area. LABEL is a
pseudo-op with the type attribute of BYTE. The first byte is your linmt for
the maxi mumlength of input. Since this is a one-byte field, the nmaxinumis
hex FF, or 255. The second byte is for DOS to store the actual nunber of
characters entered. The third byte begins a field that is to contain the
typed characters.

MAMVEPAR LABEL BYTE ; Start of parameter |ist:

MAXLEN DB 20 ; Max length of input

ACTLEN DB ? ; Actual length

NAVEFLD DB 20 DUP(" ") ; Chars entered from keyboard

In the paranmeter list, since the LABEL pseudo-op takes no space, NAMEPAR
and MAXLEN refer to the sane nmenory | ocation. MASM can al so use the STRUC
pseudo-op to define a paraneter list as a structure. However, since
references to nanmes defined within a structure require special addressing,
our discussion delays this topic until Chapter 24, "Assenbler Pseudo-op
Ref erence. "
To request input, use DCS function call 10 (hex OAH) in the AH, load the
address of the parameter list (NAMEPAR in the exanple) into the DX, and
i ssue INT 21H as foll ows:

MOV AH, OAH ; Request input function

LEA DX, NAMEPAR ; Load address of paramli st

INT 21H ; DOS i nterrupt

The INT operation waits for a user to enter characters and checks that the
nunber entered does not exceed the maxinmumin the paranmeter list (20 in the
exanpl e). The user presses the return key (hex OD) to signal the end of an
entry. This character also enters the input field (NAMEFLD in the
exanples). If you key in a name such as BROM (Return), the parameter |ist
appears as foll ows:

decimal: |20 5| B RR A W N # | | | |...
hex: | 14| 05| 42| 52| 4F| 57| 4E| 0D| 20| 20| 20] 20| . . .

The operation delivers the length of the input nane, 05, into the second
byte of the paraneter list, named ACTLEN in the exanple. The return
character is at NAMEFLD+5. The # synbol here is to indicate this character
because hex OD has no printable synbol. Since the maxi mum|ength of 20

i ncl udes the hex OD, the actual nanme may be only 19 characters | ong.

PROGRAM ACCEPTI NG AND DI SPLAYI NG NAMES

The EXE programin Figure 8-2 requests that a user enters a nane, then

di spl ays the nane on the center of the screen and sounds the speaker. The
program conti nues accepting and di spl ayi ng nanmes until the user presses
Return as a reply to a pronpt. Consider a user entering the nane

TED SM TH:

page 60,132
TI TLE CTRNAME (EXE) Accept nanes & center on screen
STACKSG SEGMVENT PARA STACK * St ack’

DW 32 DUP(?)
STACKSG ENDS
DATASG SEGVENT PARA Data
NAMVEPAR LABEL BYTE ; Name paraneter |ist:
MAXNLEN DB 20 ;max. |ength of nane
NAMELEN DB ? ;no. chars entered
NAVEFLD DB 20 DUP(" '),'$" ;name, & delimter

; for displaying

PROVPT DB "Name? ', ' 9
DATASG ENDS
CODESG SEGVENT PARA ' Code'
BEG N PRCC FAR

ASSUME CS: CODESG DS: DATASG, SS: STACKSG, ES: DATASG

PUSH DS

SUB AX, AX

PUSH AX

MOV AX, DATASG

MOV DS, AX

MOV ES, AX

CALL QILOCLR ; Clear screen
A20L O0P:

MOV DX, 0000 ; Set cursor to 00, 00

CALL QOCURS

CALL B1OPRWP ; Di spl ay pronpt

CALL D10l NPT ; provide for input of nane

CALL QIOCLR cl ear screen

C\WP NAMELEN, 00 Narre ent er ed?
JE A30 : no -- exit

CALL El 0CODE
CALL FI OCENT
JMP A20LCCP

; Set bell &'$
; Center & display nane

A30:
RET ; Return to DCS
BEG N ENDP
; Di spl ay pronpt:
B1OPRWP PROC NEAR
MOV AH, 09 ; Request di spl ay
LEA DX, PROWT
INT 21H
RET
B1OPRWP ENDP
; Accept input of nane:
D10l NPT PROC NEAR
MOV AH, OAH ; Request i nput
LEA DX, NAMEPAR
INT 21H
RET
D10l NPT ENDP
; Set bell &'$' delimter:
El 0CCDE PROC NEAR
MOV BH, 00 ; Repl ace return char <CD)
MOV BL, NAMELEN ;with bell (07)
MOV NAMEFLO] BX] , 07
MOV NAMEFLD BX+1],'$' ; Set display delimter
RET
E10CCDE ENDP
; Center & display nane:
FI OCENT PROC NEAR
MOV DL, NAMELEN ; Locate center col um:
SHR DL, 1 ;divide length by 2,
NEG DL ;reverse sign,
ADD DL, 40 ; add 40
MOV DH, 12 ; Center row
CALL QOCURS ; Set cursor
MOV AH 09
LEA DX NAMEFLD ;Display nane
INT 21H
RET
FI OCENT ENDP
; cl ear screen:
Q@ OCLR PROC NEAR
MOV AX, 0600H ; Request scroll screen
MOV BH, 30 ; Color (07 for BW
MOV CX, 0000 ; From 00, 00
MOV DX, 1B4FH ; To 24,79
INT 10H ; Call BICS
RET
QLOCLR ENDP
; Set cursor row col:
QOCURS PROC NEAR ; DX set on entry
MOV AH 02 ; Request set cursor
MOV BH, 00 ; Page #0
INT 10H ; Call BICS
RET
QOCURS ENDP

CODESG ENDS
END BEG N

Fi gure 8-2 Accepting and Displ ayi ng Nanmes

1. Divide the length 09 by 2 = 4, and
2. Subtract this value from40 = 36

In ELOCENT, the SHR instruction shifts the length 09 one bit to the right,
effectively dividing it by 2. Bits 00001001 beconme 00000100. The NEG
instruction reverses the sign, changing +4 to -4. ADD adds the val ue 40,
giving the starting position for the colum, 36, in the DL register. Wth
the cursor set at row 12, columm 36, the nane appears on the screen as
fol | ows:

Row 12: TED SM TH

|
Col um: 36 40

Note the instruction in ElIOCODE that inserts the bell (07) character in the
input area imediately follow ng the nane:

MOV MAVEFLD] BX] , 07

The preceding instruction set the BX with the I ength. The effect of this
MOV is to conbine the length in the BX with the address of NAMEFLD and to
nove the 07 to this address. Thus, for a length of 05, the instruction
inserts 07 at NAVEFLD+05 (replacing the return character) follow ng the
name. The last instruction in El OCODE inserts a delinmter follow ng the 07
so that when FI OCENT displays the nane, the speaker al so sounds.

Entering Only the Return Character

If you key in a nane that exceeds the maximumin a paraneter list, the
speaker sounds and the operation accepts only the return character. But if
you key in only Return, the operation accepts it and inserts a |length of
zero in the paraneter list, as follows:

Paraneter |ist (hex): |14|00|0D...

To signify end of input data on a pronpt for nane, a user can sinply press
Return. If the length is zero, the programdetermnines that input is ended.

Clearing the Return Character

You can use an input value for various purposes, such as printing on
reports, storing in a table, or witing on disk. For these purposes, you
may have to replace the return character (hex 0D) sonewhere in NAMEFLD with
a blank (hex 20). The field containing the actual |ength NAMELEN, provides
its relative position. If NAVELEN contains 05 then this position is
NAMVEFLD+5. You can nove this length into the BX register for indexing the
address of NAMEFLD as fol |l ows:

MOV BH, 00 ; Set BX
MOV BL, NAMELEN ; to 00 05
MOV NAMEFLD BX],20H ;C ear ret char to bl ank

The third MOV instruction noves a blank (hex 20) to the address specified
in the first operand: the address of NAMEFLD plus the contents of BX in
effect, NAMEFLD+5.

Clearing the Input Area

Entered characters replace the previous contents in an input area, and
remain there until other characters replace them Assunme the follow ng
successi ve input:

I nput NAMEPAR (hex)

1. BROWK | 14| 05| 42| 52| 4F| 57| 4E| 0D| 20| 20| 20| . . . | 20|
2. HAM LTON | 14| 08| 4B| 41| 4D| 49| 4C| 54| 4F| 4E| 0D) . . . | 20|
3, ADANB | 14| 05| 41| 44| 41| 4D| 53| 0D| 45| 5A| 0D) . . . | 20|

The nane HAM LTON repl aces the shorter nane BROM. But because the nane
ADAMS is shorter than HAM LTON, it replaces HAM L and the return character

replaces the T. The remaining letters, ON, still foll ow ADAMS. A useful
practice is to clear NAMEFLD prior to pronpting for a name as foll ows:
MOV CX 20 ;Initialize for 20 | oops
MOV SI, 0000 ;Start position for nane
B30:
MOV NAMEFLD SI],20H ; One blank to nane
INC S ;Increment for next char
LOOP B30 ; 20 tinmes

Instead of the SI register, you could use DI or BX. A nore efficient nethod
that noves a word of two blanks requires only ten | oops. However, because
NAMVEFLD is defined as DB (byte), you would have to override its length with
a WORD and PTR (pointer) operand as the follow ng indicates:

MoV

CX |0 ; Initialize for 10 | oops
LEA SI,NAMEFLD ; Initialize start of name
B30:
MOV WORD PTR SI], 2020H ; Two bl anks to nane
INC Sl ; Increment 2 positions
INC Sl ; in nane
LOOP B30 ; Loop 10 tines

Interpret the MOV at B30 as: Myve a blank word to where the address in the

Sl register points. This exanple uses LEAto initialize and uses a slightly
different nethod for the MOV at B30 because you cannot code an instruction

such as

MOV WORD PTR[NAMEFLD] , 2020H ;lnvalid
Clearing the input area solves the problemof short nanes being foll owed by

previous data. A nore efficient practice is to clear only positions to the
right of an entered nare.

SCREEN AND KEYBOARD OPERATI ONS: EXTENDED DOS

W' Il now exam ne the extended net hod introduced by DOS 2.0, which is nore
in the UNIX style. If you use a version of DOS prior to 2.0, you won't be
able to execute the prograns in this section. The extended nethod invol ves

a file handle that you set in the BX regi ster when requesting an
I/ O operation. The following standard file handl es are al ways avail abl e:

I nput, normally keyboard (CON)
Qutput, normally display (CON
Error output, display (CON)
Auxi i ary device (AUX)

Printer (LPT1 or PRN)

A wWNEFLO

The DOS interrupt is INT 21H, and the required function call is requested
in the AH register: hex 3F for input and hex 40 for output. Set the CX with
the nunber of bytes to read or display, and |l oad the DX with the address of
the input or output area.

A successful operation clears the carry flag and inserts in the AX the
nunber of characters actually entered or displayed. An unsuccessfu
operation sets the CF flag and inserts an error code (6 in this case) in
the AX. Since the AX could contain either a length or an error code, the
only way to determine an error conditionis to test the CF flag, although
keyboard and di splay errors would presumably be rare. You al so use file
handles in a simlar way to process disk files, where error conditions are
nor e conmmon.

You can use these function calls to redirect input and output to other

devi ces, although we won't concern ourselves with this feature here.

DI SPLAYI NG ON THE SCREEN. EXTENDED DCS

The following instructions illustrate the use of the extended DOS function
required to request display:

DI SAREA DB 20 DUP(" ") ; Display area
MOV AH, 40H ; Request di spl ay
MOV BX 01 ; Fi 1e handl e for out put
MOV CX 20 ; Maxi mum 20 characters
LEA DX, DI SAREA ; Di spl ay area
INT 21H ; Call DOS

LEA | oads the address of DISAREA in the DX to enable DOS to |l ocate the
information that is to display. A successful operation clears the carry
flag (which you may test) and sets the AX with the nunber of characters

di spl ayed. An unsuccessful operation could occur because of an invalid
handl e. The operation sets the CF flag and inserts an error code (6 in this
case) in the AX. Since the AX could contain either a length or an error
code, the only way to determne an error condition is to test the CF flag.

Exerci se: Displaying on the Screen

Let's use DEBUG to examne the internal effects of an interrupt. Load
DEBUG, and when its pronpt appears, type A 100 in order to begin entering
assenbl er instructions (but not the nunbers) at |ocation 100. Renenber that
DEBUG assunes that all nunbers entered are hexadeci nal .

100 MOV AH 40

102 MOV BX 01

105 MV CX, Xxx (I'nsert length of your nane)
108 MOV DX 10E

0B INT 21

| OD RET

10E DB " Your nane'

The program sets the AH to request display and sets the hex value 10F in
the DX - the location of the DB containing your nane, at the end of the

pr ogr am

When you have keyed in the instructions, press Return again. Try the U
comand (U 100, 10D) to unassenble the programand R and then repeat T
comands to trace execution. Wien DEBUG executes INT 21H, it traces through
Bl OS, so on reaching 10B, use the QO command (G 10D) to execute directly
through to the next instruction. Your nanme shoul d di splay on the screen

Use the Q command to return to DCS.

ACCEPTI NG | NPUT FROM THE KEYBOARD:. EXTENDED DCS

The following illustrates use of the extended DOS function to request
keyboard i nput:
| NAREA DB 20 DUP(" ') ;lnput area
MOV AH, 3FH ; Request i nput
MOV BX 00 ; File handl e for keyboard
MOV CX 20 ; Maxi mum 20 characters
LEA DX, INAREA ;Ilnput area
I NT 21H ; Call DOs

LEA | oads the of fset address of INAREA in the DX. The INT operation waits
for the user to enter characters, but does not check if the nunber of
characters exceeds the maxinmumin the CX register (20 in the exanple).
Pressing the return key (hex OD) signals the end of an entry. For exanple,
entering the characters "PC Users G oup" causes the follow ng in | NAREA

PC Users Group, hex 0D, hex OA

The entered characters are inmmediately followed by a carriage return (hex
0D), which you entered, and a line feed (hex 0A), which you did not enter
Because of this feature, the maxi num nunber and the [ength of the input
area should provide for an additional two characters. If you enter fewer
characters than the nmaxi mum the locations in nenmory follow ng the entered
characters still contain the previous contents.

A successful operation clears the CF flag (which you may test) and sets the
AX with the nunber of characters delivered. In the preceding exanple, this
length is 14, plus 2 for the return and line feed, or 16. Accordingly, a
program can determ ne the actual nunber of characters entered. Al though
this feature is trivial for YES and NO type of replies, it is useful for
replies with variable length such as nanes.

An unsuccessful operation could occur because of an invalid handle. The
operation sets the CF flag and inserts an error code (6 in this case) in
the AX. Since the AX could contain either a length or an error code, the
only way to determine an error condition is to test the CF flag.

If you key in a nanme that exceeds the maximumin the CX register, the
operation accepts all characters. Consider a situation in which the CX
contains 08 and a user enters the characters "PC Exchange." The operation
sets the first eight characters in the input area as "PC Excha" with no
return and line feed followi ng, and sets the AX with a length of 08. The
next | NT operation does not accept a nane directly fromthe keyboard,
because it still has the rest of the previous string in its buffer. It
delivers "nge" followed by the return and line feed to the input area and
sets the AX to 05. Both operations are "nornal" and the CF flag is cleared.

First INT: PC Excha AX = 08

Second | NT; nge, 0D, OA AX = 05

A programcan tell that a user has keyed in a valid nunber of characters if
(a) the nunber returned in the AXis less than the nunber in the CX or (b)
the nunber returned is equal and the last two characters in the input area
are 0D and OA.

The built-in checks of original DOS function call OAH for keyboard i nput
offer a far nore powerful operation and, at least at the tinme of this
witing, that operation is the preferred choice.

Exercise: Entering Data

Here's an exercise in which you can view the effect of entering data while
in DEBUG The programallows you to enter up to 12 characters, including
return and line feed. Load DEBUG and when the pronpt appears, type A 100
to begin entering assenbler instructions at |ocation 100. Renenber that
DEBUG assunes that nunbers entered are hexadeci nal .

100 MOV AH, 3F
102 MOV BX, 00
105 MOV CX, OC
108 MoV DX, 10F
10B INT 21

10D JMP 100
10Fr DB *

The program sets the AH and BX to request keyboard input, inserts the
maxi mum length in the CX, and sets hex 10F in the DX - the location of the
DB at the end of the program The entered characters appear begi nning at
| ocati on hex 10F.

When you key in the instructions, press Return again. Try the U comrand
(U 100, 108) to unassenble the program Use R then repeated T conmands to
trace execution of the four MO instructions. Wen at |ocation 10B, use G
10D to execute through the interrupt (don 't follow it through Bl OS). DEBUG
stops to let you enter characters, and is followed by Return. Check the
contents of the AX register, the carry flag, and use D 10F to display the
entered characters in nenory. You can continue |ooping indefinitely. Enter
Qto termnate any tine.

USE OF CARRI AGE RETURN, LINE FEED, AND TAB FOR DI SPLAY

One way to nmake displays nore efficient is to use the carriage return, line
feed, and tab characters. You can code themin ASCI|I or hex, as:

ASCl | Hex
CR 13 ODH
LF 10 0AH
TAB 09 09H

Use these characters where you display or accept input for advancing the
cursor automatically to the start of the next row, either for original or
extended DOS. Exanpl e:

MESSAGE DB 09,’ PC Users Group Annual Report' , 13, 10
MOV AH, 40H ; Request di spl ay
MOV BX 01 ; Handl e

The

MV CX 31 ; Length
LEA DX MESSAGL ; Message

INT 21H ; Call DCS
use of EQU to define the operations makes a program nore readabl e:
CR EQU 13 or EQU ODH
LF EQU 10 or EQU OAH
TAB EQU 09 or EQU O09H
MESSAGE DB TAB, 'PC Users G oup Annual Report', CR LF

KEY PO NTS TO REMEMBER

O |INT 10H is the instruction that links to BIOS for keyboard and di spl ay
operations. INT 21H is a special DOCS operation that handl es sone of the
conpl exity of input/output.

O Be consistent in using hex notation. For exanple, INT 21 is not the
sanme as | NT 21H

0 Be careful to enter the correct values in the AX, BX, CX, and DX
regi sters dependi ng on the operation

0O Wen using INT 21H for original DOS, define a delimter ($) innmediately
follow ng the display area. Be careful when clearing the field not to
clear the delimter as well. A nmissing delinmter can cause spectacul ar
effects on a screen

O For input under original DOS, define a paraneter |ist carefully. The
I NT 21H operation expects the first byte to contain a maxi mrum val ue and
autonatically inserts an actual value in the second byte.

0 For extended DCS function call to display, set the AHwith hex 40 and
use handle 01 in the BX

O For extended DCS function call to read, set the AHwi th hex 3F and use
handle 00 in the BX. Entries are followed in the input area by a return
and a formfeed character. The operation does not check for entries
t hat exceed the maxi mum

QUESTI ONS

8-1. Wat is the hex value for the bottomrightnost |ocation on a 40-
col um screen?

8-2. Code the instructions to set the cursor to row 12, colum 8.

8-3. Code the instructions to clear the screen beginning at row 12, col um
0, through row 22, columm 79

8-4. Code data items and instructions to display a nessage "Wat is the
date (mi dd/yy)?." Follow the nessage with a beep sound. Use (a)
original DCS function calls and (b) extended DCS function calls and
file handl es.

8-5 Code data itens and instructions to accept data fromthe keyboard
according to the format in Question 8-4. Use (a) original DCS
function calls and (b) extended DOS function calls and file handl es.

8-6. Wiat are the standard file handl es for keyboard input, normal screen
di splay, and printer?

8-7 Key in the programin Figure 8-2 with the foll owing changes then

8- 8.

assenble, link, and test: (a) Instead of row 12, center at row 15.
(b) Instead of clearing the entire screen, clear only rows 0 through
15

Revi se Figure 8-2 for use with extended DOS function calls for input
and di splay. Assenble, link, and test.

