
4

Scheduling and Context
Switching

An operating system achieves the illusion of concurrent processing by rapidly
switching one processor among several computations. Because the speed of the compu-
tation is extremely fast compared to that of a human, the effect is impressive − many ac-
tivities appear to proceed simultaneously.

Context switching lies at the heart of the process juggling act. It consists of stop-
ping the current computation, saving enough information so it may be restarted later, and
restarting another process. What makes such a change difficult is that the CPU cannot be
stopped at all − it must continue to execute the code that switches to a new process.

This chapter describes the basic context switching mechanism, showing exactly how
a process saves its state information, chooses another process to run from among those
that are ready, and relinquishes control to that process. It describes the data structure that
holds information about processes while they are not executing and shows how the con-
text switch uses that data structure. For the present, we ignore the questions of when or
why processes choose to switch context. Later chapters address these issues, showing
how higher layers of the system use the context switch built here.

4.1 The Process Table

The system keeps all information about processes in a data structure called the pro-
cess table. There is one entry in the process table for each process. Because exactly one
process is running at any time, one of those entries corresponds to an active process − its
saved state information is out of date. All other process table entries contain information
about processes that have been stopped temporarily. To switch context the operating sys-
tem saves information about the currently running process in its process table entry and

67

-- --

68 Scheduling and Context Switching Chap. 4

restores information from the process table entry corresponding to the process it is about
to execute.

Exactly what information must be saved in the process table? The system must save
any values that will be destroyed when the new process runs. For example, in PC-Xinu
each process has its own separate stack memory, so a copy of the stack need not be
saved. (The new process may change the machine registers when it executes, but these
registers will be saved on the stack for that process.) In addition to data that must be re-
loaded when it resumes a process, the system also keeps information in the process table
that it uses to control processes and account for their resources. These details will be-
come clear as we see how the process table is used.

The PC-Xinu process table, proctab, is an array with entries for up to NPROC
processes. It is declared in file proc.h, below. Each entry in proctab is a structure named
pentry that defines the information kept for each process.

/* proc.h - isbadpid */

/* process table declarations and defined constants */

#ifndef NPROC /* set the number of processes */

#define NPROC 30 /* allowed if not already done */

#endif

/* process state constants */

#define PRCURR ’\01’ /* process is currently running */

#define PRFREE ’\02’ /* process slot is free */

#define PRREADY ’\03’ /* process is on ready queue */

#define PRRECV ’\04’ /* process waiting for message */

#define PRSLEEP ’\05’ /* process is sleeping */

#define PRSUSP ’\06’ /* process is suspended */

#define PRWAIT ’\07’ /* process is on semaphore queue*/

/* miscellaneous process definitions */

#define PNMLEN 9 /* length of process "name" */

#define NULLPROC 0 /* id of the null process; it */

/* is always eligible to run */

#define isbadpid(x) (x<=0 | | x>=NPROC)

/* process table entry */

struct pentry {
char pstate; /* process state: PRCURR, etc. */

-- --

Sec. 4.1 The Process Table 69

int pprio; /* process priority */

int psem; /* semaphore if process waiting */

int pmsg; /* message sent to this process */

int phasmsg; /* nonzero iff pmsg is valid */

char *pregs; /* saved regs. (SP) */

char *pbase; /* base of run time stack */

word plen; /* stack length */

char pname[PNMLEN+1]; /* process name */

int pargs; /* initial number of arguments */

int (*paddr)(); /* initial code address */

};

extern struct pentry proctab[];

extern int numproc; /* currently active processes */

extern int nextproc; /* search point for free slot */

extern int currpid; /* currently executing process */

Throughout PC-Xinu, each process is identified by an integer. The following rule gives
the relationship between those integers and the process table:

Processes are referenced by their process id, which is the index of the
saved state information in proctab.

Only the pstack field of the PC-Xinu process table entry contains information need-
ed to restart the process; other fields contain information for bookkeeping and error
checking. For example, the fields pbase, plen, pargs, and pname contain the address of
the process stack, the length of the stack, the number of arguments passed to the process
when it was created, and a character string identifying the process. Some of these values
are used to free memory when a process completes; others are merely for debugging.

4.2 Process States

The system uses the pstate field of the process table to help it keep track of what the
process is doing and, consequently, the validity and semantics of operations performed
on it. The system designer must evolve this set of process states as the initial design
proceeds. The set should be well-defined before implementation begins because many of
the routines that manipulate processes base their actions on the process’ state, requiring
the programmer to carefully consider each case.

In PC-Xinu, the following six states are used: current, ready, receiving, sleeping,
suspended, and waiting. File proc.h contains symbolic constants for each of these that
are used throughout the code: PRCURR, PRREADY, PRRECV, PRSLEEP, PRSUSP, and
PRWAIT. In addition to the above values, the pstate field contains PRFREE when no
process is using that process table entry. Later, we will explore each state in detail, see-

-- --

70 Scheduling and Context Switching Chap. 4

ing why they arose and how a process moves between them. Only the current and ready
states concern us at this time.

4.3 Selecting A Ready Process

Almost every system needs ready and current process states. Processes are classi-
fied ready when they are eligible for CPU service but are not currently executing; the
single process receiving CPU service is classified as current. Switching context consists
of two things: selecting a process from among those that are ready (or current), and giv-
ing control of the CPU to the selected process. Software that implements the policy used
to select a process from among those that are ready to run is called a scheduler. In PC-
Xinu, procedure resched makes that selection according to the following well-known
scheduling policy:

At any time, the highest priority process eligible for CPU service is ex-
ecuting. Among processes with equal priority, scheduling is round-
robin.

Round-robin means that processes are selected one after another so that all members of
the set have an opportunity to execute before any member has a second opportunity.
Priorities, kept in the pprio field of the process table entry, are nothing more than positive
integers that give the user some control over how processes are selected for CPU service.
(More complex systems adjust priorities from time-to-time, based on observed behavior
of the process.)

To make the selection of a new process faster, all ready processes appear in a list or-
dered by priority, such that the highest priority process is immediately accessible.
Resched uses the queue mechanisms described in Chapter 3 to examine and update that
list. It uses process priorities as keys and keeps the list ordered by key, so highest priori-
ty processes are found at the tail. Global variables rdyhead and rdytail point to the head
and tail of the ready list in the q structure. Whether the current process should also be
kept on the ready list is determined largely by the details of each implementation, but the
entire system must be designed to obey the same rule. In PC-Xinu,

The current process does not appear on the ready list, but its process id
is always given by the global integer variable currpid.

Consider what happens to the currently executing process during a context switch.
Often, the currently executing process remains eligible to use the CPU even though it
must temporarily pass control to another process. In such situations, the context switch
must change the current process’ state to PRREADY and move it onto the ready list, so it
will be considered for CPU service again later.

-- --

Sec. 4.3 Selecting A Ready Process 71

How does the rescheduler, resched, decide whether to move the current process onto
the ready list? It does not receive an explicit parameter telling the disposition of the
current process. Instead, the system routines cooperate to save the current process in the
following way: if the currently executing process will not remain eligible to use the
CPU, system routines assign to the current process’ pstate field the desired next state be-
fore calling resched. Whenever resched prepares to switch context, it checks pstate for
the current process and makes it ready only if the state still indicates PRCURR.

In some situations it is necessary to suspend rescheduling temporarily while critical
system activities are taking place. Suspension of rescheduling makes it possible for one
PC-Xinu process to have exclusive use of the CPU even when interrupts are enabled.
The procedure sys_pcxget returns a nonzero value if rescheduling is permitted and re-
turns zero otherwise. If the current process calls resched when rescheduling is not per-
mitted, the procedure returns immediately. Since any return from resched must leave the
process in the current state, it is an error if a process enters resched when rescheduling is
suspended and the process is not the current process. Consequently, the system panic
procedure is called to halt PC-Xinu if this error occurs. Suspension of rescheduling is
described in more detail in Chapter 9.

In addition to moving the current process to the ready list, resched completes every
detail of scheduling and context switching except saving and restoring machine registers
and switching stacks (which cannot be done directly in a high-level language like C). It
selects a new process to run, changes the process table entry for the new process, re-
moves the new process from the ready list, marks it current, and updates currpid. It also
resets the preemption counter, something we will consider later. Finally, it calls ctxsw to
save the current registers, switch stacks, and restore the registers for the new process.
The code is shown below.

-- --

72 Scheduling and Context Switching Chap. 4

/* resched.c - resched */

#include <conf.h>

#include <kernel.h>

#include <proc.h>

#include <q.h>

/*--

* resched -- reschedule processor to highest priority ready process

*

* Notes: Upon entry, currpid gives current process id.

* Proctab[currpid].pstate gives correct NEXT state for

* current process if other than PRCURR.

*--

*/

int resched()

{
register struct pentry *optr; /* pointer to old process entry */

register struct pentry *nptr; /* pointer to new process entry */

optr = &proctab[currpid];

if (optr->pstate == PRCURR) {
/* no switch needed if current prio. higher than next */

/* or if rescheduling is disabled (pcxflag == 0) */

if (sys_pcxget() == 0 | | lastkey(rdytail) < optr->pprio)

return;

/* force context switch */

optr->pstate = PRREADY;

insert(currpid,rdyhead,optr->pprio);

} else if (sys_pcxget() == 0) {
kprintf("pid=%d state=%d name=%s",

currpid,optr->pstate,optr->pname);

panic("Reschedule impossible in this state");

}

/* remove highest priority process at end of ready list */

nptr = &proctab[(currpid = getlast(rdytail))];

nptr->pstate = PRCURR; /* mark it currently running */

preempt = QUANTUM; /* reset preemption counter */

ctxsw(&optr->pregs,&nptr->pregs);

/* The OLD process returns here when resumed. */

return;

}

-- --

Sec. 4.3 Selecting A Ready Process 73

Resched uses procedure ctxsw to save the process state and change stacks because
registers and the stack pointer cannot be manipulated in a high-level language. The code
for ctxsw is, of course, machine dependent. When ctxsw switches processes the FLAGS
register must be saved, since it contains the interrupt state of the process. The other re-
gisters that must be saved are BP, SI and DI, since C procedures assume that these will
not change across procedure calls. Ctxsw saves these registers on the stack in exactly the
same way as the assembly language programs in Chapter 2. Obviously, the stack pointer
must be changed only after these registers have been preserved because as soon as the
stack pointer changes, the CPU will be using the stack of the new process, wherever that
happens to be. From this point on, the processor is working with the stack of the new
process, and all subsequent operations refer to this new stack. The DI, SI, FLAGS and
BP registers for the new process are loaded from its stack. Upon return from ctxsw, the
instruction pointer is set to the code for the new process, and the machine resumes exe-
cuting instructions associated with the new process.

The parameters passed to ctxsw are pointers to the pregs fields of the current and
new process table entries. The pointer to the pregs field of the new process is used to ob-
tain the stack environment of the new process, while that of the current process is used to
store the saved stack environment of the current process.

-- --

74 Scheduling and Context Switching Chap. 4

; ctxsw.asm - _ctxsw

include dos.asm

dseg

; null data segment

endds

pseg

public _ctxsw

;---

; _ctxsw -- context switch

;---

; void ctxsw(opp,npp)

; char *opp, *npp;

;---

; Stack contents upon entry to ctxsw:

; SP+4 => address of new context stack save area

; SP+2 => address of old context stack save area

; SP => return address

; The addresses of the old and new context stack save areas are

; relative to the DS segment register, which must be set properly

; to access the save/restore locations.

;

; The saved state consists of the current BP, SI and DI registers,

; and the FLAGS register

;---

_ctxsw proc near

push bp

mov bp,sp ; frame pointer

pushf ; flags save interrupt condition

cli ; disable interrupts just to be sure

push si

push di ; preserve registers

mov bx,[bp+4] ; old stack save address

mov [bx],sp

mov bx,[bp+6] ; new stack save address

mov sp,[bx]

pop di

pop si

popf ; restore interrupt state

pop bp

-- --

Sec. 4.3 Selecting A Ready Process 75

ret

_ctxsw endp

endps

end

The code in ctxsw reveals how to resolve the dilemma caused by trying to save re-
gisters while a process is still using them. Think of an executing process that has called
resched, which in turn has called ctxsw. Instead of trying to save registers explicitly as
the process executes, ctxsw captures the value of the stack pointer precisely when the re-
gisters (including the instruction pointer and FLAGS) are already on the stack as a result
of the code in ctxsw. This freezes the stack of the process as if it were in the midst of ex-
ecuting a normal procedure. Then ctxsw restores the stack pointer to that of another
frozen process; ctxsw restores the registers and returns normally to resume execution of
the other process.

It is interesting to note that all processes call resched to perform context switching,
and resched calls ctxsw, so all suspended processes will resume at the same place − just
after the call to ctxsw in resched. Each process has its own stack of procedure calls,
however, so the return from resched will take them in various directions. Note also that
if the two pointers passed to ctxsw are equal − for example, if a process could perform a
context switch to itself − then ctxsw will simply return to the caller with no change.

Building all procedures to return to their caller is a key ingredient in keeping the
system design clean. It would be impossible unless the scheduler returned to its caller.
So, both resched and ctxsw have been designed to behave just like any other procedures
− they eventually return. Of course, there may be considerable delay before a call to
resched returns because the CPU may execute other processes arbitrarily long before res-
tarting the calling process (depending on the process priorities).

4.4 The Null Process

Resched only switches the processor among the current and ready processes; it does
not create new processes. It assumes that at least one process is available and does not
bother to verify whether the ready list is empty. There is a strong consequence:

Resched can only switch context from one process to another, so at
least one process must always remain ready to run.

To insure that a ready process always exists, PC-Xinu creates an extra process,
called the null process, when it initializes the system. The null process has process id
zero and priority zero; its code, which will be shown in Chapter 13, consists of an infinite
loop. Because user processes must have a priority greater than zero, the scheduler
switches to the null process only when no user process remains ready to run.

-- --

76 Scheduling and Context Switching Chap. 4

4.5 Making A Process Ready

When resched needed to move the current process onto the ready list, it manipulated
the list directly. Making a process eligible for CPU service occurs so frequently that we
have invented a procedure to do just that. It is named ready:

/* ready.c - ready */

#include <conf.h>

#include <kernel.h>

#include <proc.h>

#include <q.h>

/*--

* ready -- make a process eligible for CPU service

*--

*/

int ready (pid)

int pid; /* id of process to make ready */

{
register struct pentry *pptr;

if (isbadpid(pid))

return(SYSERR);

pptr = &proctab[pid];

pptr->pstate = PRREADY;

insert(pid,rdyhead,pptr->pprio);

return(OK);

}

Usually, a procedure which calls ready needs to call resched after placing the pro-
cess on the ready list to ensure that the CPU is executing the highest priority ready pro-
cess. When the caller needs to move several processes from some other list onto the
ready list, rescheduling after each call to ready can be time-consuming. The answer is to
suspend temporarily the calls to resched and call ready several times. Then, after all
processes have been moved and the list manipulation is complete, a call to resched rein-
states the policy by assuring that the highest priority ready process is currently executing.
We will see an example of delayed rescheduling in Chapter 6.

-- --

Sec. 4.6 Summary 77

4.6 Summary

Scheduling and context switching are closely related activities that make concurrent
execution possible. Scheduling consists of choosing a process from among those that are
eligible for execution. Context switching consists of stopping one process and starting a
new one. To keep track of the processes, the system uses a global data structure called
the process table. Whenever the scheduler temporarily suspends a process, it saves all
pertinent information about that process in its process table entry, along with a value that
indicates the process state. This chapter considered procedures ready, resched, and ctxsw
that performed transitions between the current and ready states.

FOR FURTHER STUDY

Many scheduling algorithms have been devised and analyzed. Coffman and Den-
ning [1973] contains a formal treatment of the subject. Less formal are Bull and Pack-
ham [1971] and Bunt [1976]. Lampson [1968] discusses scheduling based on priorities.

Other books, by Habermann [1976], Calingaert [1982], and Bic and Shaw [1988]
emphasize the consequences of various scheduling schemes.

EXERCISES

4.1 Write a test program to show that a call to ctxsw which passes the same pointer in both
parameters simply returns to the caller.

4.2 Identify fields in the process table used only for error checking.

4.3 Investigate another processor (e.g., the Motorola 68000 or the PDP-11 series), and determine
what information needs to be saved during a context switch.

4.4 Write ctxsw for another processor, trying to minimize the number of instructions.

4.5 Because each process has its own process table entry, information like register values could
be saved in the process table entry rather than the process stack during a context switch.
Does this reduce or increase the amount of assembly code required? What are the advantages
of each approach?

4.6 It would be possible for ctxsw to reach into the run-time stack to obtain enough information
to have the process resume in the routine that called resched instead of in resched. What are
the advantages and disadvantages of doing so?

4.7 The C compiler used to build PC-Xinu does not require registers AX, BX, CX, DX and ES to
be saved and restored across procedure calls. Suggest a way to do context switching which
saves these registers as well. Give reasons for adopting such an approach. Redesign ctxsw to
save these registers as well as BP, the FLAGS, SI, and DI in the process table entry.

4.8 Rewrite resched to have an explicit parameter giving the disposition of the currently execut-
ing process. Does it require more time?

-- --

78 Scheduling and Context Switching Chap. 4

4.9 Describe the relationship between coroutines and context switching in this chapter.

4.10 Implement stack checking by placing an uncommon value at the base of each process stack.
Have resched check both the current process stack size and the value at the base of the pro-
cess stack before the process resumes. If either indicate stack overflow, print an error mes-
sage and halt.

