
14

Window Management

Now that we have all the elements necessary to create and run concurrent processes,
we have the problem of displaying the output of these processes in a sensible way on the
PC screen. In this chapter we show how to divide the screen into nonoverlapping, rec-
tangular ‘‘windows,’’ each behaving as a single tty device. Since a process may write
characters to any tty device, windows make it possible to show the results of different
processes in physically separate regions of the screen.

14.1 Windows As Pseudo-Devices

From a low-level point of view, writing a character to a window involves two steps:
positioning the cursor in the window, and displaying the character at the cursor position.
Both of these functions can be performed by BIOS calls. But requiring a process to
manage the details of cursor positioning conflicts with our goals of flexibility, simplicity,
and generality related to device independent I/O. Writing a character to a window should
appear no different to the process as writing a character to the CONSOLE device or even
to a disk file.

The idea is to treat a window as a device, even though it is physically controlled by
the same video display hardware and BIOS software as the CONSOLE. Once a window
is given status as a device, an operation such as putc will be mapped into appropriate
low-level operations of cursor positioning and character display. Since these low-level
operations occur within the device driver, their details will be hidden from the caller. Be-
cause a window device does not correspond directly to hardware, it is called a pseudo-
device.

If a window is a device, where does it appear in the device switch table? One possi-
bility is to have four window devices, each corresponding to a quadrant of the video
screen. This has the advantage of simplicity, but prevents a user process from choosing
the size and location of the window. Our design establishes a number of window

233

-- --

234 Window Management Chap. 14

pseudo-devices, each of which can be reconfigured by a process at run-time to
correspond to any rectangular screen area. Opening a window connects an executing
process to a free pseudo-device slot, initializes the device data structures, creates an out-
put server process, and returns the device number of the slot for use with the high-level
I/O operations. Operations putc and write display characters in the window, advancing
the cursor position and scrolling the window when it becomes full. The getc and read
operations obtain characters from the keyboard in the same way as the CONSOLE dev-
ice, but only those characters which are typed when the cursor is in the window. Finally,
close clears the window and detaches the running process from the pseudo-device, killing
the server process and marking the pseudo-device as available.

14.2 Window-Specific Fields In The tty Structure

The drivers for window devices are very similar to those for tty devices, except that
they contain code for such window-specific operations as positioning the cursor, drawing
a border around the window, and scrolling the window area. In fact, the window device
software uses the same tty structure as the CONSOLE device. There is a small number of
fields in this structure that pertain solely to window operations and that are ignored in the
tty device driver discussed in Chapter 12. The reader should review the contents of file
tty.h in the following discussion.

14.2.1 The CURSOR Type

A window’s location and size are determined by specifying the coordinates of the
upper-left and lower-right corners of the window on the screen. Screen coordinates are
given as a pair

(column, row)

of integers, with (0, 0) corresponding to the upper-left corner of the screen. It is con-
venient to package this pair in a structure definition, so that a screen location can be
passed as a unit rather than as two integers. This structure type is called CURSOR and is
defined in file window.h.

/* window.h - window definitions */

#define LWFREE -1 /* window is free */

#define LWLIMBO 0 /* window is in limbo */

#define LWALLOC 1 /* window is allocated */

#define BW 0x07 /* white on black attributes */

#define TLBORDER 0xc9

-- --

Sec. 14.2 Window-Specific Fields In The tty Structure 235

#define TRBORDER 0xbb

#define BLBORDER 0xc8

#define BRBORDER 0xbc

#define HBORDER 0xcd

#define VBORDER 0xba

#define BORDER 0x100 /* attribute bit for border */

/* character display screen - 25 rows x 80 columns */

#define G_ROWS 25

#define G_COLS 80

/* cursor position */

typedef struct {
unsigned char col;

unsigned char row;

} CURSOR;

Since the column and row coordinates are limited in practice by the screen size of 80
columns and 25 rows on a typical PC, the coordinates can be stored in fields of type un-
signed char.

The window size and location are determined by the tty structure variables topleft
and botright, which are the coordinates of the top-left and bottom-right corners of the
window.

14.2.2 Relative Cursor Positions

The curcur field of the tty structure corresponds to the current cursor position in the win-
dow, i.e., where the next character will be displayed. This field does not contain absolute
screen coordinates. Rather, the column and row coordinates in curcur are relative to the
topleft coordinates of the window. For example, if curcur contains the coordinates (0,0),
then the window cursor position is at the upper-left corner of the window.

14.2.3 Window Borders And Character Attributes

A window may be opened with or without a border. The window.h file contains
PC-specific character codes for drawing a border around a window. Since output charac-
ters cannot appear on the window border, having a border effectively reduces the number
of columns and rows available by two. The topleft and botright fields are adjusted ac-
cordingly if a border is present. Since closing the window erases the window display, the
hasborder Boolean variable is used to determine if the window border needs to be erased
too.

-- --

236 Window Management Chap. 14

A user process may also choose to have the characters in the window displayed in
colors (intensities for a monochrome display) different from the default white characters
on a black background. The display colors/intensities are called attributes. For an open
window, the attributes are stored in the attr component of the tty structure. These attri-
butes are obtained from a parameter in the open call.

14.3 Opening A Window

Procedure ttyopen makes a connection between a running program and a window
device. After checking the window coordinates, ttyopen looks for an unused window slot
in the device switch table. An output server process lwoproc is created whose function is
the same as ttyoproc − namely, to serve as the lower-half device driver for the window.
The rest of the code draws a border around the window if required and sets up the
remaining tty structure components. File ttyopen.c contains the code.

/* ttyopen.c - ttyopen */

#include <conf.h>

#include <kernel.h>

#include <proc.h>

#include <tty.h>

#include <io.h>

#include <bios.h>

/*--

* ttyopen -- open a window on a tty

*--

*/

ttyopen(devptr,bp,ap)

struct devsw *devptr;

char *bp; /* border string */

char *ap; /* attribute string */

{
register struct tty *iptr;

int pid;

int ps;

char cp[7]; /* output server process name */

int i;

CURSOR boxp[2]; /* window corners from passed params */

CURSOR topl,botr; /* topleft, bottom right of window */

int attr; /* window attributes (color, etc.) */

int lwoproc(); /* tty server process */

int brdr; /* true if the window has a border */

-- --

Sec. 14.3 Opening A Window 237

if (bp == NULL | | *bp == 0) /* reopen the console */

return(tty[0].dnum);

if ((brdr=lwbord(bp,boxp))==SYSERR| | (attr=lwattr(ap,BW))==SYSERR)
return(SYSERR);

topl = boxp[0];

botr = boxp[1];

if (topl.col >= G_COLS | | topl.row >= G_ROWS

| | botr.col >= G_COLS | | botr.row >= G_ROWS)

return(SYSERR);

i = brdr ? 2 : 0; /* offset for border */

if (topl.row+i > botr.row | | topl.col+i > botr.col)

return(SYSERR); /* not enough room for window */

if (brdr) { /* make room for the border */

botr.col--;

botr.row--;

topl.col++;

topl.row++;

}
disable(ps);

if ((i=wfree()) == SYSERR) {
restore(ps);

return(SYSERR);

}
iptr = &tty[i];

strcpy(cp,"*LWO *");

cp[4] = ’0’+i;

if ((pid=create(lwoproc,INITSTK,TTYOPRIO,cp,1,i)) == SYSERR) {
iptr->oprocnum = -1;

iptr->wstate = LWFREE; /* mark it as free */

restore(ps);

return(SYSERR);

}
iptr->oprocnum = pid;

ready(pid);

iptr->hasborder = brdr;

iptr->topleft = topl;

iptr->botright = botr;

iptr->attr = attr;

iptr->rowsiz = botr.row-topl.row+1;

iptr->colsiz = botr.col-topl.col+1;

iptr->curcur.row = 0;

iptr->curcur.col = 0;

iptr->ihead = iptr->itail = 0; /* empty input queue */

-- --

238 Window Management Chap. 14

iptr->isem = screate(0); /* chars. read so far=0 */

iptr->icnt = 0;

iptr->osem = screate(OBUFLEN); /* buffer available=all */

iptr->odsend = 0; /* sends delayed so far */

iptr->ohead = iptr->otail = 0; /* output queue empty */

iptr->ocnt = 0;

iptr->ehead = iptr->etail = 0; /* echo queue empty */

iptr->ecnt = 0;

iptr->imode = IMCOOKED;

iptr->iecho = iptr->evis = TRUE; /* echo console input */

iptr->ierase = iptr->ieback = TRUE; /* console honors erase */

iptr->ierasec = BACKSP; /* using ˆh */

iptr->ecrlf = iptr->icrlf = TRUE; /* map RETURN on input */

iptr->ocrlf = iptr->oflow = TRUE;

iptr->ikill = TRUE; /* set line kill == @ */

iptr->ikillc = ATSIGN;

iptr->oheld = FALSE;

iptr->ostart = STRTCH;

iptr->ostop = STOPCH;

iptr->icursor = 0;

iptr->ifullc = TFULLC;

scrollup(boxp[0],boxp[1],0,attr); /* erase the window */

if (brdr)

border(boxp[0],boxp[1]); /* draw the border */

restore(ps);

return(iptr->dnum);

}

/*--

* border -- draw a border around a screen window

*--

*/

LOCAL border(tl,br)

CURSOR tl,br;

{
CURSOR csr; /* used for absolute cursor positioning */

int pcx;

xdisable(pcx);

for (csr.row=tl.row; csr.row<=br.row; csr.row++) {
if (csr.row==tl.row) {

csr.col = tl.col;

putcsrpos(csr,0);

putchr(TLBORDER,1,0);

-- --

Sec. 14.3 Opening A Window 239

for (csr.col++ ; csr.col<br.col ; csr.col++) {
putcsrpos(csr,0);

putchr(HBORDER,1,0);

}
putcsrpos(csr,0);

putchr(TRBORDER,1,0);

} else if (csr.row==br.row) {
csr.col = tl.col;

putcsrpos(csr,0);

putchr(BLBORDER,1,0);

for (csr.col++ ; csr.col<br.col ; csr.col++) {
putcsrpos(csr,0);

putchr(HBORDER,1,0);

}
putcsrpos(csr,0);

putchr(BRBORDER,1,0);

} else {
csr.col = tl.col;

putcsrpos(csr,0);

putchr(VBORDER,1,0);

csr.col = br.col;

putcsrpos(csr,0);

putchr(VBORDER,1,0);

}
}
xrestore(pcx);

}

/*--

* wfree -- get a free window slot

*--

*/

LOCAL

wfree()

{
int i;

struct tty *iptr;

for (i=1 ; i<Ntty ; i++) {
iptr = &tty[i];

if (iptr->wstate == LWFREE) {
iptr->wstate = LWALLOC;

iptr->seq++;

return(i);

-- --

240 Window Management Chap. 14

}
}
return(SYSERR);

}

Note that much of the code for tty structure initialization in ttyopen is the same as in
ttyinit. The reason these fields are initialized in ttyopen rather than at system initializa-
tion is that when a window is closed and then re-opened, the window characteristics
should be returned to their default values. Since the CONSOLE is never closed, its
characteristics need to be initialized only once.

The wfree routine in ttyopen searches the tty structure for a free device. The wstat
field contains LWFREE if the window is unused. When a free slot is found, wfree fills
the wstat field with LWALLOC, marking the window as unavailable for further open
operations. (Recall that for the CONSOLE device, the wstat field is used differently − to
hold the id of the keyboard server process.)

As the name ttyopen implies, this procedure is associated with the CONSOLE driver.
This may seem confusing, but it will become clear when you understand the following:

Because windows are dynamically allocated, the open operation is as-
sociated with the CONSOLE driver, not with the individual window
devices.

To connect a process to a window, the user calls open, passing CONSOLE as the
first argument, a character string describing the coordinates of the upper-left and
bottom-right window corners as the second argument, and a character string describing
the window attributes as the third. Open uses the device switch table to pass the call to
ttyopen, which returns the device number of the window pseudo-device allocated by the
open operation. If open is called with an empty string or NULL as its second argument, it
simply returns the descriptor of the CONSOLE device without opening a new window.

Translating border and attribute strings into numeric window coordinates and attri-
bute bytes is carried out with the lwbord and lwattr routines, respectively.

/* lwbord.c - lwbord */

#include <ctype.h>

#include <conf.h>

#include <kernel.h>

#include <tty.h>

/*--

* lwbord -- parse window border attribute string

*--

*/

-- --

Sec. 14.3 Opening A Window 241

int lwbord(bp,w)

char *bp;

CURSOR w[2]; /* pointer to cursor array */

{
int i,j;

int coord; /* row/col coordinate generated */

int brdr; /* true if window has a border */

if (bp == NULL)

return(SYSERR);

if (brdr = (*bp==’#’))

bp++;

for(i=0 ; i<2 ; i++) { /* loop for two sets of ints */

for(j=0 ; j<2 ; j++) { /* loop for two ints per set */

if (isdigit(*bp) == 0)

return(SYSERR);

coord = 0;

while (isdigit(*bp)) {
coord *= 10;

coord += (*bp++) - ’0’;

}
if (coord < 0 | | coord >= 256)

return(SYSERR);

switch(j) {
case 0:

w[i].col = coord;

break;

case 1:

w[i].row = coord;

break;

}
if (*bp == ’,’ && j == 0)

bp++;

}
if (*bp == ’:’ && i == 0)

bp++;

}
if (*bp != 0)

return(SYSERR);

return(brdr);

}

-- --

242 Window Management Chap. 14

/* lwattr.c - lwattr */

#include <ctype.h>

#include <conf.h>

#include <kernel.h>

#include <tty.h>

#define ATTR_NOBLINK 0x3f

#define ATTR_BLINK 0x80

#define ATTR_NOINTENSE 0x87

#define ATTR_INTENSE 0x08

#define ATTR_DEFAULT 0x07

#define newcol(c,n,j) (((c) & ˜(7<<(j))) | ((n) << (j)))

static char *clrs[] = { "blk","blu","grn","cyn","red","mag","yel","wht" };

/*--

* lwattr -- parse window color attribute string

*--

*/

int lwattr(ap,attr)

char *ap;

int attr; /* default value */

{
char tmp[4]; /* used to compare with clrs */

int i,j;

int cnum; /* value of selected attr */

int shift = 0; /* shift count */

if (ap == NULL | | *ap == 0)

return(attr);

while (isalnum(*ap) == 0 && *ap != ’/’) {
if (*ap == 0)

return(attr);

switch (*ap++) {
case ’*’:

attr &= ATTR_NOBLINK;

break;

case ’?’:

attr | = ATTR_BLINK;

break;

case ’-’:

attr &= ATTR_NOINTENSE;

-- --

Sec. 14.3 Opening A Window 243

break;

case ’+’:

attr | = ATTR_INTENSE;

break;

default:

return(SYSERR);

}
}
for(i=0 ; i<3 ; i++) {

if (*ap == 0)

return(attr);

if (i == 1) {
if (*ap != ’/’)

return(SYSERR);

ap++;

shift = 4;

continue;

}
if (isdigit(*ap))

cnum = (*ap++) - ’0’;

else if (isalpha(*ap)) {
for (j=0 ; j<3 ; j++) {

if (isalpha(*ap) == 0)

return(SYSERR);

tmp[j] = tolower(*ap);

ap++;

}
tmp[j] = 0;

for (cnum=0 ; cnum<8 ; cnum++)

if (strcmp(clrs[cnum],tmp) == 0)

break;

} else

continue;

if (cnum >= 8)

return(SYSERR);

attr = newcol(attr,cnum,shift);

}
if (*ap == 0)

return(attr);

return(SYSERR);

}

-- --

244 Window Management Chap. 14

The border string passed as the first parameter to lwbord has the form
‘‘#c1 , r1:c2 , r2’’ where ‘‘c1 , r1’’ is a string representing the decimal coordinates (in
column,row order) of the upper-left corner of the window, and ‘‘c2 , r2’’ is a string
representing the coordinates of the bottom-right corner. If the ‘#’ character is omitted at
the beginning of the border string, the window will be created without a border. The
second parameter to lwbord is a pointer to an array of two cursor variables; upon return,
this array contains the coordinates of the upper-left and bottom-right coordinates of the
window to be created. The value returned by lwbord is one if a border should be present,
and zero otherwise.

The attribute string passed as the first parameter to lwattr has the form ‘‘fff/bbb.’’
The ‘fff’ and ‘bbb’ strings are three-character color codes representing the foreground
and background colors to be used with a color display. The color codes and correspond-
ing colors are given in Figure 14.1.

Code Color�������������������������������������
blk black�������������������������������������
blu blue�������������������������������������
grn green�������������������������������������
cyn cyan�������������������������������������
red red�������������������������������������
mag magenta�������������������������������������
yel yellow	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
wht white
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

The ‘fff’ or ‘bbb’ fields may be replaced by a single decimal digit in the range 0 to
7, which specifies the numeric code for the foreground or background color, respectively.
For monochrome displays, the numeric code represents levels of gray with 0 for black
and 7 for white. If either or both of the ‘fff’ or ‘bbb’ fields are missing, the default
values are taken. The window color codes may be preceded by optional blink or intensi-
ty specifiers in the attribute string. A ‘?’ blink specifier indicates that the foreground
blinks, while a ‘*’ specifies that it does not. A ‘+’ specifies that the foreground is inten-
sified, while a ‘-’ specifies that it is not.

Attributes that are not explicitly given in the attribute string are taken from the
second parameter to lwattr. Lwattr returns the attribute value.

An example of a call to open is

open(CONSOLE, "#10,4:30,20", "red/wht");

This will create a bordered window with upper-left coordinates (10,4) and lower-right
coordinates (30,20), and with red characters on a white background.

-- --

Sec. 14.4 Upper-Level Window Driver Routines 245

14.4 Upper-Level Window Driver Routines

The high-level window input/output operations are similar to those for the CON-
SOLE tty device. The differences arise from the dynamic nature of window creation and
deletion. A process may be blocked in the midst of performing input/output operations to
a window when another process closes and deallocates it. Care must be taken to ensure
that a blocked operation completes only if the state of the window has not changed.

14.4.1 Window Output Operations

Circular buffer management for the window putc driver is identical to that for the tty
driver. File lwputc.c contains code for the driver routine lwputc:

-- --

246 Window Management Chap. 14

/* lwputc.c - lwputc */

#include <conf.h>

#include <kernel.h>

#include <tty.h>

#include <proc.h>

/*--

* lwputc -- put a character into a logical window

*--

*/

lwputc(devptr, ch)

struct devsw *devptr;

char ch;

{
struct tty *iptr;

int ps;

int seq;

iptr = &tty[devptr->dvminor];

disable(ps);

if (iptr->wstate != LWALLOC) {/* is window open? */

restore(ps);

return(SYSERR);

}
seq = iptr->seq;

wait(iptr->osem); /* wait for space in queue */

if (iptr->wstate != LWALLOC /* is window still open? */

| | iptr->seq != seq) {
restore(ps);

return(SYSERR);

}
iptr->obuff[iptr->ohead++] = ch;

++iptr->ocnt;

if (iptr->ohead >= OBUFLEN)

iptr->ohead = 0;

sendn(iptr->oprocnum,TMSGOK); /* wake up the tty process */

restore(ps);

return(OK);

}

The initial code in lwputc verifies that the window is open. What happens next is more
interesting. Lwputc waits on the output buffer semaphore osem. The call returns im-

-- --

Sec. 14.4 Upper-Level Window Driver Routines 247

mediately if the buffer is not full, but it delays otherwise. What may seem odd is that
lwputc records the value of seq before the call to wait and then verifies that it remained
the same after the call. This code has been introduced because windows may be closed
(and even reopened) while processes remain enqueued waiting to write to them. When
this happens, the window sequence number seq changes, and the waiting processes are
resumed. The idea is to have the waiting processes verify that the wait did not terminate
because the window was closed. If it did, and the sequence number changed, lwputc re-
ports an error to its caller.

Lwwrite is almost identical to ttywrite. The only differences are that lwwrite checks
to see if the window is open before writing to the buffer and also checks the status of the
repeated calls to lwputc.

-- --

248 Window Management Chap. 14

/* lwwrite.c - lwwrite */

#include <conf.h>

#include <kernel.h>

#include <tty.h>

#include <io.h>

/*--

* lwwrite -- write one or more characters to a console window

*--

*/

lwwrite(devptr, buff, count)

struct devsw *devptr;

char *buff;

int count;

{
register struct tty *ttyp;

int avail;

int ps;

if (count<0)

return(SYSERR);

if (count == 0)

return(OK);

disable(ps);

ttyp = &tty[devptr->dvminor];

if (ttyp->wstate != LWALLOC) {/* is window open? */

restore(ps);

return(SYSERR);

}
avail = scount(ttyp->osem);

if (avail >= count) {
writcopy(buff, ttyp, avail, count);

sendn(ttyp->oprocnum,TMSGOK);

} else {
if (avail > 0) {

writcopy(buff, ttyp, avail, avail);

sendn(ttyp->oprocnum,TMSGOK);

buff += avail;

count -= avail;

}
for (; count>0 ; count--)

if (lwputc(devptr, *buff++) == SYSERR) {
restore(ps);

-- --

Sec. 14.4 Upper-Level Window Driver Routines 249

return(SYSERR);

}
}
restore(ps);

return(OK);

}

14.4.2 Window Input And Control Operations

The upper-level window input and control driver routines lwgetc, lwread, and lwcntl
are similar to their tty counterparts. The code is in files lwgetc.c, lwread.c, and lwcntl.c:

-- --

250 Window Management Chap. 14

/* lwgetc.c - lwgetc */

#include <conf.h>

#include <kernel.h>

#include <tty.h>

#include <io.h>

#include <proc.h>

/*--

* lwgetc -- read one character from a window device

*--

*/

lwgetc(devptr)

struct devsw *devptr;

{
struct tty *iptr;

int ps;

char ch;

int seq;

iptr = &tty[devptr->dvminor];

disable(ps);

if (iptr->wstate != LWALLOC) {/* is window open? */

restore(ps);

return(SYSERR);

}
seq = iptr->seq;

wait(iptr->isem); /* wait for a character in buff */

if (iptr->wstate != LWALLOC /* is window still open? */

| | iptr->seq != seq) {
restore(ps);

return(SYSERR);

}
ch = iptr->ibuff[iptr->itail++];

--iptr->icnt;

if (iptr->itail >= IBUFLEN)

iptr->itail = 0;

restore(ps);

return(ch);

}

-- --

Sec. 14.4 Upper-Level Window Driver Routines 251

/* lwread.c - lwread */

#include <conf.h>

#include <kernel.h>

#include <tty.h>

#include <io.h>

/*--

* lwread -- read one or more characters from a logical window

*--

*/

lwread(devptr, buff, count)

struct devsw *devptr;

char *buff;

int count;

{
register struct tty *ttyp;

int avail, nread;

int ps;

if (count<0)

return(SYSERR);

disable(ps);

ttyp = &tty[devptr->dvminor];

if (ttyp->wstate != LWALLOC) {/* is window open? */

restore(ps);

return(SYSERR);

}
avail = scount(ttyp->isem);

if ((count = (count==0 ? avail : count)) == 0) {
restore(ps);

return(0);

}
nread = count;

if (count <= avail)

readcopy(buff, ttyp, avail, count);

else {
if (avail > 0) {

readcopy(buff, ttyp, avail, avail);

buff += avail;

count -= avail;

}
for (; count>0 ; count--)

if ((*buff++ = lwgetc(devptr)) == SYSERR) {

-- --

252 Window Management Chap. 14

restore(ps);

return(nread-count);

}
}
restore(ps);

return(nread);

}

/* lwcntl.c - lwcntl */

#include <conf.h>

#include <kernel.h>

#include <proc.h>

#include <tty.h>

/*--

* lwcntl -- do misc. tty control functions

*--

*/

SYSCALL lwcntl(devptr, func)

struct devsw *devptr;

int func;

{
register struct tty *ttyp;

int ps;

int c;

disable(ps);

ttyp = &tty[devptr->dvminor];

if (ttyp->wstate != LWALLOC) {/* can’t access unopened window */

restore(ps);

return(SYSERR);

}
c = OK; /* assume the best */

switch (func) {
case TCNEXTC:

wait(ttyp->isem);

c = ttyp->ibuff[ttyp->itail];

signal(ttyp->isem);

break;

case TCMODER:

ttyp->imode = IMRAW;

break;

-- --

Sec. 14.4 Upper-Level Window Driver Routines 253

case TCMODEC:

ttyp->imode = IMCOOKED;

break;

case TCMODEK:

ttyp->imode = IMCBREAK;

break;

case TCECHO:

ttyp->iecho = TRUE;

break;

case TCNOECHO:

ttyp->iecho = FALSE;

break;

case TCICHARS:

c = scount(ttyp->isem);

break;

default:

c = SYSERR;

}
restore(ps);

return(c);

}

14.4.3 Closing A Window

Closing a window is straightforward. The lwclose routine kills the output server
process, deletes the buffer semaphores (releasing any waiting processes), and erases the
window.

-- --

254 Window Management Chap. 14

/* lwclose.c - lwclose */

#include <conf.h>

#include <kernel.h>

#include <proc.h>

#include <tty.h>

/*--

* lwclose -- routine to close a window device

*--

*/

lwclose(devptr)

struct devsw *devptr;

{
struct tty *iptr;

int ps;

int sct;

disable(ps);

iptr = &tty[devptr->dvminor];

if (iptr->wstate != LWALLOC) {/* can’t close unopened window */

restore(ps);

return(SYSERR);

}
iptr->wstate = LWLIMBO;

iptr->seq++;

kill(iptr->oprocnum); /* kill the output process */

if (winofcur == devptr->dvminor)

winofcur = 0; /* current cursor can’t be here anymore */

sdelete(iptr->isem);

sdelete(iptr->osem);

if (iptr->hasborder) {
--iptr->topleft.col;

--iptr->topleft.row;

++iptr->botright.col;

++iptr->botright.row;

}
scrollup(iptr->topleft,iptr->botright,0,BW); /* erase window */

iptr->wstate = LWFREE;

restore(ps);

return(OK);

}

-- --

Sec. 14.4 Upper-Level Window Driver Routines 255

Lwclose marks the state wstate of the window as LWLIMBO while it carries out the
remainder of the code. When the window is in this state, processes attempting to perform
input/output operations will be denied access (even those that were previously blocked,
as in lwputc). But equally important, requests to open a new window will find that the
device is not free and will consequently not attempt to open it. Only after the entire deal-
location process has completed is the state changed to LWFREE, making it possible for
the window pseudo-device slot to be allocated to another screen window. This two-step
deallocation technique is necessary because lwclose calls routine sdelete that may result
in a reschedule.

The seq component of the window tty structure is incremented in lwclose as it was
in ttyopen. This safeguards against the scenario where a window is closed and then im-
mediately re-opened, while a process is blocked on the window’s input or output buffer
semaphore. In such a situation, the blocked process will find that the sequence number
has changed, so the input or output operation will fail.

14.5 The Lower-Half Window Output Server Process

Each open window has a server process which is essentially the same as the tty out-
put server process discussed in Chapter 12. The window output server is created when
the window is opened and killed when the window is closed. When a process calls an
upper-half window output operation, the upper-half routine queues the output characters
and sends a message to the lower-half server process, which dequeues the output charac-
ters and displays them in the proper window on the video display. The lower-half pro-
cess must manage the translation of logical cursor position in the window into the
corresponding physical position on the screen. The logical cursor position, contained in
the curcur field of the tty structure, is relative to the window size and location on the
physical screen, determined by fields topleft and botright. File lwoproc contains the code
for the lower-half server process.

-- --

256 Window Management Chap. 14

/* lwoproc.c - lwoproc */

#include <conf.h>

#include <kernel.h>

#include <tty.h>

#include <io.h>

#include <bios.h>

/*--

* lwoproc -- lower-half tty device driver process for window output

*--

*/

PROCESS lwoproc(i)

int i; /* tty minor device number */

{
register struct tty *iptr;

int ps;

int ct;

char ch;

Bool enl, onl;

CURSOR *c;

int wput();

int rcvchr();

iptr = &tty[i]; /* pointer to tty structure */

onl = enl = FALSE;

c = &(iptr->curcur);

disable(ps);

for (; ;) { /* endless loop */

if (enl) {
enl = FALSE;

wput(iptr,c,NEWLINE);

continue;

}
/* look at the echo buffer */

if (iptr->ecnt) { /* any chars in echo buffer? */

ch = iptr->ebuff[iptr->etail++];

--iptr->ecnt;

if (iptr->etail >= EBUFLEN)

iptr->etail = 0;

if ((ch==RETURN | | ch==NEWLINE) && iptr->ecrlf) {
enl = TRUE;

ch = RETURN;

-- --

Sec. 14.5 The Lower-Half Window Output Server Process 257

}
wput(iptr,c,ch);

continue;

}
if (iptr->oheld) {

rcvchr();

continue;

}
if (onl) {

onl = FALSE;

wput(iptr,c,NEWLINE);

continue;

}
if ((ct=iptr->ocnt) > 0) {

ch = iptr->obuff[iptr->otail++];

--iptr->ocnt;

if (iptr->otail >= OBUFLEN)

iptr->otail = 0;

if (ct < (OBUFLEN-OBMINSP) && iptr->odsend == 0)

signal(iptr->osem);

else if (++(iptr->odsend) == OBMINSP) {
iptr->odsend = 0;

signaln(iptr->osem, OBMINSP);

}
if ((ch==RETURN | | ch==NEWLINE) && iptr->ocrlf) {

onl = TRUE;

ch = RETURN;

}
wput(iptr,c,ch);

continue;

}
rcvchr();

}
}

/*--

* wput -- put a single character to the window; honor NEWLINE, etc.

*--

*/

LOCAL wput(iptr, c, ch)

register struct tty *iptr;

CURSOR *c;

char ch;

{

-- --

258 Window Management Chap. 14

int wrap();

int pcx;

if (ch < BLANK) {
switch (ch) {
case RETURN:

c->col = 0;

break;

case NEWLINE:

if (c->row == iptr->rowsiz-1)

scrollup(iptr->topleft,iptr->botright,

((iptr->rowsiz>1)?1:0),iptr->attr);

else

c->row++;

break;

case BELL:

wtty(ch);

return;

case BACKSP:

if (c->col > 0)

c->col--;

break;

case TAB:

c->col += TABSTOP;

c->col -= (c->col % TABSTOP);

wrap(iptr,c);

break;

default:

return; /* do nothing */

}
wputcsr(iptr,*c);

} else {
xdisable(pcx);

wputcsr(iptr,*c);

putchr(ch, 1, 0);

xrestore(pcx);

c->col++;

wrap(iptr,c);

}
}

/*--

* wrap -- wrap around to a new line in the window; scroll if necessary

*--

-- --

Sec. 14.5 The Lower-Half Window Output Server Process 259

*/

LOCAL wrap(iptr,c)

register struct tty *iptr;

CURSOR *c;

{
if (c->col >= iptr->colsiz) {

if (c->row >= iptr->rowsiz-1)

scrollup(iptr->topleft,iptr->botright,

((iptr->rowsiz>1)?1:0),iptr->attr);

else

c->row++;

c->col = 0;

}
}

/*--

* rcvchr -- wait for another character to arrive

*--

*/

LOCAL rcvchr()

{
struct tty *iiptr;

if (winofcur != 0) {
iiptr = &tty[winofcur];

wputcsr(iiptr,iiptr->curcur);

}
if (receive() == TMSGEFUL) {

wtty(BELL);

}
}

Writing a character to the screen involves moving the cursor into the window and
displaying the character at the cursor position. Lwoproc is more complicated than
ttyoproc because it must contend with the details of cursor position and window manage-
ment that the tty device leaves to the wtty BIOS routine. The wput routine in lwoproc.c
carries out both cursor positioning and character writing operations. Observe that wput
must deal with special characters, such as RETURN, NEWLINE, or TAB, and when to
wrap around to a new line. Wput brackets its code to display a character with calls to
xdisable and xrestore to avoid reschedules between positioning the cursor and writing a
character to the screen; such reschedules can result displaying the character at the wrong
location on the screen.

-- --

260 Window Management Chap. 14

14.6 Low-Level PC Screen Operations

Like wtty, low-level screen operations including positioning the cursor, writing a
character to the screen, and scrolling a screen region are carried out by calls to the BIOS
video interrupt VID, described in Chapter 2. File pcscreen.c contains the code:

/* pcscreen.c - putcsrpos, scrollup, putchr */

#include <dos.h>

#include <conf.h>

#include <kernel.h>

#include <window.h>

#include <vidio.h>

#define INT10H(r) vidint(&(r))

#define AH(r) ((r).h.ah)

#define AL(r) ((r).h.al)

#define BH(r) ((r).h.bh)

#define BL(r) ((r).h.bl)

#define CH(r) ((r).h.ch)

#define CL(r) ((r).h.cl)

#define DH(r) ((r).h.dh)

#define DL(r) ((r).h.dl)

#define AX(r) ((r).x.ax)

#define BX(r) ((r).x.bx)

#define CX(r) ((r).x.cx)

#define DX(r) ((r).x.dx)

#define CF(r) ((r).x.cflag)

#define UNSIGNED(x) (*((unsigned int *) &(x))) /* alias! */

#define SCSRPOS 2

#define SCRLUP 6

#define WCHR 10

/*--

* putcsrpos -- put the cursor at a given position

*--

*/

putcsrpos(csr,page)

CURSOR csr;

unsigned page;

{

-- --

Sec. 14.6 Low-Level PC Screen Operations 261

union REGS r;

AH(r)=SCSRPOS;

DX(r)=UNSIGNED(csr);

BH(r)=page;

INT10H(r);

}

/*--

* scrollup -- scroll a window up

*--

*/

scrollup(tl,br,lines,attr)

CURSOR tl,br;

unsigned lines;

unsigned char attr;

{
union REGS r;

AH(r)=SCRLUP;

AL(r)=lines;

CX(r)=UNSIGNED(tl);

DX(r)=UNSIGNED(br);

BH(r)=attr;

INT10H(r);

}

/*--

* putchr -- put character at current cursor position

*--

*/

putchr(ch,count,page)

char ch;

unsigned count,page;

{
union REGS r;

AH(r)=WCHR;

AL(r)=ch;

CX(r)=count;

BH(r)=page;

INT10H(r);

}

-- --

262 Window Management Chap. 14

Note the use of macros in this code. Macros such as AH serve two purposes: they
simplify coding, and they are easier to read, as one can see by comparing AH(r) to r.h.ah.
The UNSIGNED macro looks complicated, but it is easily understood once you recognize
that its purpose is to translate a two-byte CURSOR structure into an unsigned (16-bit) in-
teger. This subterfuge is necessary only to trick the compiler into accepting the code
without complaint.

A related screen management routine is wputcsr. The parameters to wputcsr are a
pointer iptr to the tty structure of a window and a cursor position csr. The purpose of
wputcsr is to translate a relative cursor position in a logical window into a physical cursor
position on the screen. The iptr parameter provides access to the window corner parame-
ters topleft and botright in the tty structure. The code for wputcsr is extremely simple.

/* wputcsr.c - wputcsr */

#include <conf.h>

#include <kernel.h>

#include <tty.h>

/*--

* wputcsr -- cursor position routine

*--

*/

wputcsr(iptr,csr)

struct tty *iptr;

CURSOR csr;

{
csr.row += iptr->topleft.row;

csr.col += iptr->topleft.col;

putcsrpos(csr,0);

}

14.7 Window Keyboard Input

It is obvious that there is only one keyboard, even though there may be many open
windows. If a process is waiting to getc a character from a window device, how can the
system know which window device a keyboard character should go to? Another issue
concerns output flow control. If processes are displaying characters to several windows
simultaneously, should a suspend request (usually Ctrl-S) suspend all window output?

Careful design will permit the keyboard to be assigned only to one window at a
time. A global variable winofcur (standing for ‘‘window of cursor’’) contains the current
tty device to which keyboard input will be directed. The corresponding window will be
called the input window. Winofcur is initialized to zero, representing the CONSOLE dev-
ice. The reader should consult the ttyiproc code described in Chapter 12.

-- --

Sec. 14.7 Window Keyboard Input 263

Keyboard function keys are used to switch the keyboard input between windows
and the CONSOLE. We identify windows with their minor device numbers; the CON-
SOLE is treated as window zero. The tty keyboard server process traps special function
keys Fn to switch to window n; as a special case, function key F10 switches to the CON-
SOLE. If window n is not open, the switch is not made.

Switching to an input window amounts to assigning the window number to the
winofcur variable. Displaying the cursor in the input window is more complicated, since
the cursor is continually moving from window to window during screen display. To en-
sure that the cursor will appear in the input window when screen output is idle, each win-
dow output server process lwoproc positions the cursor in the input window after it has
emptied its buffer, just before calling receive. To ensure that the cursor is positioned in
the input window as soon as a switch is made, ttyiproc sends a message to the window
output server process, guaranteeing that it will awaken to position the cursor if it is idle.
Observe that this design results in output flow control on a window-by-window basis.
Flow control characters only affect the current input window.

Each window keeps track of its current cursor position in tty variable curcur, and in-
put characters are echoed in the window in the same way output characters are displayed.
The CONSOLE is treated differently, because no curcur position is maintained for the
CONSOLE. (The exercises explore why this is the case.) For this reason, CONSOLE
output is displayed and input is echoed wherever the cursor happens to be on the screen.

When the current input window is closed, it clearly cannot continue to be the input
window. Lwclose therefore makes the CONSOLE the input window in this case.

14.8 Window Driver Initialization

Driver initialization, which is done once when PC-Xinu is started, is straightforward
for window devices. Since much of the initialization of the tty structure for windows is
done in lwopen, the lwinit routine is concerned only with those tty structure fields which
remain constant, or which relate to window allocation.

-- --

264 Window Management Chap. 14

/* lwinit.c - lwinit */

#include <conf.h>

#include <kernel.h>

#include <tty.h>

#include <io.h>

#include <bios.h>

/*--

* lwinit -- initialize console window

*--

*/

lwinit(devptr)

struct devsw *devptr;

{
register struct tty *iptr;

iptr = &tty[devptr->dvminor];

iptr->dnum = devptr->dvnum;

iptr->oprocnum = -1; /* no output process */

iptr->wstate = LWFREE; /* window is free */

iptr->seq = 0; /* init sequence no. */

devptr->dvioblk = (char *) iptr; /* fill tty control blk */

}

14.9 Summary

Windows provide a way to display the output from logically different activities in
physically separate screen display areas, making it easier to observe concurrency. This
chapter has shown how windows can be implemented as logical tty devices. Upper-level
window driver routines are similar to their respective tty driver routines and share the
same tty structure.

Window driver design is complicated by hardware-specific screen management re-
quirements such as cursor positioning, scrolling, and character display. These are isolat-
ed in the lower-level output driver where their details are hidden from higher levels.

Since windows may be opened and closed dynamically, the design has taken into
account the disposition of processes blocked on window input/output when the window
status changes.

-- --

For Further Study 265

FOR FURTHER STUDY

Myers [1986] gives details for implementing overlapping windows, including changing a
window’s position and size. A comparison of overlapping and non-overlapping windows
is given in Bly et. al. [1986]. Human factors relating to windows are described in Hol-
comb et. al. [1986].

EXERCISES

14.1 Both lwputc and lwgetc check the sequence number seq to determine if the window status
has changed, but neither lwwrite nor lwread examine seq. Why?

14.2 Does the sequence number technique absolutely guarantee that a process blocked on the
osem semaphore in lwputc will find a different value for seq if the window status has
changed when the process resumes? Explain.

14.3 Correct the design flaw suggested by the previous exercise.

14.4 Lwoproc handles TAB output characters (expanding them to an appropriate number of
spaces), but ttyoproc does not. Modify ttyoproc to handle TABs.

14.5 Should TAB expansion be handled by the ttyiproc input server instead of the output
server? Discuss the advantages and liabilities of each.

14.6 In ‘‘cooked’’ mode, the keyboard delete character does not correctly delete expanded
TABs from the window. Modify the drivers so that expanded TABs are deleted properly.

14.7 Design a lwcntl function that positions the cursor in the window at a location determined
by a parameter of type CURSOR. The CURSOR parameter should give relative, not abso-
lute screen coordinates.

14.8 Design a lwcntl function that erases a window (except for the border if there is one) and
positions the cursor at the upper-left corner.

14.9 What other lwcntl functions are appropriate for windows? Design and implement them.

14.10 Design a mechanism that allows for overlapping windows. When window A overlaps
window B, output to the region of window B that lies under window A will be saved, but
not displayed on the screen. When window A is closed, the characters in window B,
which were ‘‘under’’ window A, will be displayed. Your design should include the ability
to bring a window ‘‘to the top.’’ In the example above, bringing window B to the top will
mean that the full window B will be displayed, and characters in window A now ‘‘under’’
window B will disappear from the screen.

14.11 Making BIOS calls to position the cursor and to display characters on the screen is ex-
tremely inefficient. Redesign the screen output routines to write characters directly to PC
screen display memory. What are the disadvantages of this approach?

14.12 Arrange the system configuration so that the CONSOLE is just another window. What can
happen in this case if a processes closes the CONSOLE?

-- --

266 Window Management Chap. 14

14.13 Why doesn’t the CONSOLE keep track of its current cursor position? (Consider what hap-
pens with kprintf.)

14.14 Read about the X window system, designed at MIT. How does it differ from the windows
provided by PC-Xinu?

14.15 SUN Microsystems has developed a window system for bit-mapped displays called NeWS
that interprets postscript commands. Read about NeWS and identify the features that dis-
tinguish it from other window systems.

