
17

File Systems

This chapter discusses the purpose of file systems and the type of objects that can be
kept in such systems, as well as the details of the software that manages data files on a lo-
cal disk.

17.1 What Is A File System?

A file system consists of software that manages permanent data objects, objects
whose values persist longer than the processes that create and use them. Permanent data
is kept in files on secondary storage devices like disks. These files are organized into
directories. Conceptually, each file consists of a sequence of data objects (e.g., a se-
quence of integers). The file system provides operations that create or delete a file, open
a file given its name, read the next object from an open file, write an object onto an open
file, or close a file. If the file system allows random access, it may also provide a way to
seek to a specified location in a file.

File system software does much more than manipulate individual files on secondary
storage − it provides an abstract name space and high-level operations to manipulate ob-
jects in that space. The abstract space consists of the set of valid file names. It can be as
simple as, ‘‘the set of strings formed from at least one, but fewer than nine, alphabetic
characters,’’ or as complex as, ‘‘the set of strings that form a valid encoding of the net-
work, machine, user, subdirectory, and file identifiers.’’ In some systems, the syntax of
names in the abstract space conveys information about their type (e.g., text files end in
‘‘.TXT’’). In others, names give information about the organization of the file system
(e.g., file names that begin with ‘‘M1_d0:’’ reside on disk 0 of machine 1).

Names in the abstract space need not correspond to conventional files on secondary
storage. They may refer to devices, services that the system supplies, or files that reside
on another machine. For example, the name console may correspond to the CONSOLE
device; the name printer may correspond to a service that prints a copy of data written to
it; and the name foo:bar may correspond to disk file bar accessed through network foo.

321



-- --

322 File Systems Chap. 17

Allowing names to refer to devices and services is convenient because it permits
programs to perform a variety of useful functions that depend only on the file names ac-
cessed. Consider, for example, a general-purpose utility program, CP, that reads data
from one file and writes it to another (i.e. copies the contents of one file to another). If
the abstract space contains names of devices and remote files, CP can be used: to print
the contents of a file on the console terminal; to accept input from the console and write
it on a disk file; to copy a file from a remote machine to the local one; or to copy the con-
tents of one disk file to another.

What high-level operations should the file system support to make it possible to
write programs like CP? The answer depends largely on the type of objects that the
name space includes and the structure of data files on the disk. If the file name space in-
cludes devices, the set of operations that programs perform on files must map into the set
of operations they can perform on devices. If the file system treats data files as a se-
quence of bytes, operations that transfer bytes may suffice; but if data files have more
structure, operations that transfer records may be required.

Our choice of high-level operations is motivated by a desire to make devices and
files compatible and to keep the software small. It uses the following principle:

The file system considers each object to be a sequence of zero or more
bytes; any further structure must be enforced by user-level programs.

Treating files as streams of bytes makes the file system primitives easier to implement
and remember, keeps them applicable to devices and services as well as conventional
files, and allows programs to impose whatever structure they desire on the file. For ex-
ample, if integers are two bytes long, programs can create a file of integers by always
transferring two bytes at a time.

Having decided to treat files as streams of bytes, we are ready to design a set of
high-level operations for files. Our system will use exactly the same high-level opera-
tions that were used for devices. Thus, the file system will support read, write, putc,
getc, init, open, close, seek, and control primitives. The semantics of these operations
will depend on the type of the file, just as their interpretation depended on the type of
device. (To be honest, we should admit that the set of device-independent operations
were chosen with both devices and files in mind.)

When applied to conventional disk files, the high-level operations produce the fol-
lowing effects. Opening a named file connects an executing process with the data on
disk and establishes a pointer to the first byte. Operations getc and read retrieve bytes of
data from the file and advance the pointer. Operations putc and write change bytes in the
file and move the pointer along, extending the file if new data is written beyond the end.
The seek operation moves the pointer to a specified position in the file. Finally, close de-
taches the running process from the disk file.



-- --

Sec. 17.2 Disk And File Servers 323

17.2 Disk And File Servers

Machines that connect to a network can have a file system even if they do not have
a local secondary storage device. File systems on diskless machines pass requests across
the network to a server machine. The server contains special-purpose software that inter-
prets the requests and sends data back as needed. The server may provide a pseudo-disk
for each workstation, leaving most of the work of managing files and directories to the
individual machine, or it may perform most of the file system services itself, relieving the
individual workstations of that responsibility. Whether the server simulates a disk (i.e.,
provides a large array of disk blocks that must be accessed by number), or a complete file
system (i.e., provides read and write operations on named files) is determined largely by
the hardware environment and expected use of the system. The latter style is more popu-
lar because it means each individual machine needs less software.

Neither disk servers or file servers are difficult to implement given reliable network
software and the software to manage local disk files. The questions of how to name and
address the server, where to store directories, and what pieces of the file system name
space are shared among all users are the most difficult to answer because they depend on
the hardware configuration and intended use of the system. Rather than tackle the issues
of how to assign names or how to access files over a network, we will turn our attention
to the more fundamental piece of the file system, the efficient, general-purpose access
mechanism that manages information on a local disk.

17.3 A Local File System

Files are called local to a given machine if they reside on a disk that is connected to
the machine. The design of software that manages such files is nontrivial; it has been the
subject of much research. Local file software must support the high-level operations as
defined above: read, write, putc, getc, seek, open, and close. Although these operations
seem simple, complexity arises from the details of buffer and index management and
concurrency control.

To what extent should the system support concurrent operations? Large systems
usually allow arbitrary numbers of processes to read and write arbitrary numbers of files
concurrently. The chief difficulty with multiple access lies in specifying exactly what it
means to have multiple processes interacting on a single file. When will readers be able
to access changed portions? If two processes attempt to write to the same disk block,
which will be accepted? How can a process lock pieces of a file to avoid interference?

The generality of allowing multiple processes to read and write a file is usually not
necessary on small systems. Thus, to limit the software complexity and make better use
of disk space, small systems constrain the ways in which files can be accessed. Instead
of allowing files to grow incrementally as needed, they may require the user to preallo-
cate space for the file. They may also limit the number of files that a given process can
access simultaneously, or the number of processes that can simultaneously access a given
file.



-- --

324 File Systems Chap. 17

Our goal is to design file system software that makes it convenient to create and ex-
tend files without making the system unnecessarily large or slow. As a compromise
between generality and efficiency, we will allow multiple processes to access the file sys-
tem concurrently; and we will allow a single process to access an arbitrary number of
files concurrently; but we will restrict access of each file to at most one process. Finally,
because preallocating space makes programming difficult, we will allow files to grow
dynamically. The most significant consequence of this design is that good data structures
will be needed to allocate disk space and access files.

17.4 Data Structures For The File System

To support concurrent file growth and random movement, the file system allocates
disk blocks dynamically and uses an index mechanism to locate them quickly. Our
design partitions the disk into three separate areas as shown in Figure 17.1.
�����������������������������������������������������������������������������������������������������������������������������������������������

directory index data area�����������������������������������������������������������������������������������������������������������������������������������������������
�� �� �� ��

Figure 17.1 The disk partitioned into three areas

Physical disk blocks in the data area are referred to as data blocks because they hold
all the data that has been written onto files. The file system allocates unused data blocks
from a free list when they are needed and returns them to the free list when a file is delet-
ed. The data blocks allocated to a given file contain no pointers to link them together or
to relate them to the file; such information resides only in the file’s index.

Separate from the data area, the index area on each disk contains a set of index
blocks or i-blocks. Each file on the disk has its own index, which consists of a singly-
linked list of i-blocks. Each i-block contains pointers to a set of data blocks as shown in
Figure 18.2.



-- --

Sec. 17.4 Data Structures For The File System 325

Figure 17.2 Part of a file’s index with pointers to data blocks

Unlike data blocks, index blocks are smaller than physical disk blocks. Thus, there are
several index blocks in each disk block. A layer of software handles the details of read-
ing and writing index blocks, making it possible to think of them as randomly accessible
items.

The third area of the disk holds a directory that contains pointers to the lists of free
i-blocks and free disk blocks, the names of all files, and pointers to each file’s index list.
Each directory entry also contains an integer that gives the size of the file measured in
bytes.

17.5 Implementation Of The Index Manager

Manipulation of the index area introduces a common problem with disk software.
The index area contains a set of fixed-size i-blocks mapped onto a contiguous area of the
disk. Because i-blocks are smaller than physical disk blocks, the system packs eight i-
blocks into each physical block. The hardware transfers entire disk blocks, however,
making it impossible to transfer a single i-block without transferring others that reside in
the same block. So, to write an i-block, the software must read the entire physical disk
block in which it resides, copy the new i-block into its correct place in the physical block,
and write the resulting physical block back to disk. Similarly, reading an i-block requires
the software to read the physical disk block in which it resides.



-- --

326 File Systems Chap. 17

Before looking at the procedures that read and write i-blocks, we must understand a
few more details. File iblock.h is a good place to start − it defines the contents of an i-
block with structure iblk.

/* iblock.h - ibtodb, ibdisp */

typedef int IBADDR; /* iblocks addressed 0,1,2,... */

#define IBLEN 29 /* # d-block ptrs in an i-block */

#define IBNULL -1 /* null pointer in i-block list */

#define IBAREA 1 /* start of iblocks on disk */

#define IBWDIR TRUE /* ibnew: write directory */

#define IBNWDIR FALSE /* ibnew: don’t write directory */

struct iblk { /* index block layout */

long ib_byte; /* first data byte indexed by */

/* this index block */

IBADDR ib_next; /* address of next i-block */

DBADDR ib_dba[IBLEN]; /* ptrs to data blocks indexed */

};

#define ibtodb(ib) (((ib)>>3)+IBAREA)/* iblock to disk block addr. */

#define ibdisp(ib) (((ib)&07)*sizeof(struct iblk))

Each i-block contains an array of pointers to data blocks. The array contains ad-
dresses of 29 (IBLEN) data blocks, each of which is 512 bytes long. Thus, a single i-
block indexes 29 X 512 or 14,848 bytes. An i-block also contains a value that specifies
which bytes of the file it indexes, and a pointer to the next i-block on the index list.
Pointers to i-blocks are given by integers starting at zero.

How does the software know where to find an i-block given its address? The
answer is that it must know where the index area starts on the disk and how many i-
blocks are contained in each physical disk block. In our design the directory occupies
disk block zero, and the index area lies just beyond, so it starts at disk block one. Thus,
i-blocks zero through seven lie in physical block one. In-line procedure ibtodb contains
code that converts an i-block address into the correct physical disk block address. Pro-
cedure ibdisp converts an i-block address into the byte displacement within its physical
block.



-- --

Sec. 17.5 Implementation Of The Index Manager 327

17.6 Operations On I-Blocks

17.6.1 Clearing An I-Block

The file system initialization routine links all i-blocks into the free list when it builds
an empty file system. As the file system allocates i-blocks from the free list, it needs to
clear out old information. Clearing is performed by procedure ibclear. It consists of
making all data block pointers null, so they cannot be confused with valid pointers, and
setting the offset field to the value specified. In the code, shown below, file iblock.h is
not included explicitly. As we will see later, file file.h includes it.

/* ibclear.c - ibclear */

#include <conf.h>

#include <kernel.h>

#include <disk.h>

#include <file.h>

/*------------------------------------------------------------------------

* ibclear -- clear in-core copy of an iblock

*------------------------------------------------------------------------

*/

ibclear(ibptr, ibbyte)

struct iblk *ibptr;

long ibbyte;

{
int i;

ibptr->ib_byte = ibbyte;

for (i=0 ; i<IBLEN ; i++)

ibptr->ib_dba[i] = DBNULL;

ibptr->ib_next = IBNULL;

}

17.6.2 Reading An I-Block

To read an i-block, the system maps its address to a physical disk block address,
reads the physical disk block, and copies the appropriate area from the physical block
into the desired location. File ibget.c contains the code.



-- --

328 File Systems Chap. 17

/* ibget.c - ibget */

#include <conf.h>

#include <kernel.h>

#include <disk.h>

#include <file.h>

#include <mark.h>

#include <bufpool.h>

/*------------------------------------------------------------------------

* ibget -- get an iblock from disk given its number

*------------------------------------------------------------------------

*/

ibget(diskdev, inum, loc)

int diskdev;

IBADDR inum;

struct iblk *loc;

{
char *from, *to;

int i;

char *buff;

buff = getbuf(dskdbp);

read(diskdev, buff, ibtodb(inum));

from = buff + ibdisp(inum);

to = (char *)loc;

for (i=0 ; i<sizeof(struct iblk) ; i++)

*to++ = *from++;

freebuf(buff);

}

Ibget allocates space for the physical disk block from the system buffer pool, dskdbp.
After it reads the physical block and extracts the desired i-block, it releases the storage
with freebuf.

17.6.3 Writing An I-Block

I-blocks from several files may occupy the same physical disk block. Because
processes may try to write i-blocks into the same physical disk block concurrently, writ-
ing an i-block is more complicated than reading one. To prevent interference, writing
processes must obtain exclusive use of the index area. File ibput.c shows how the calling
process waits for access using the exclusion semaphore that was created at system startup
by the disk driver initialization routine.



-- --

Sec. 17.6 Operations On I-Blocks 329

/* ibput.c - ibput */

#include <conf.h>

#include <kernel.h>

#include <io.h>

#include <disk.h>

#include <file.h>

#include <mark.h>

#include <bufpool.h>

/*------------------------------------------------------------------------

* ibput -- write an iblock back to disk given its number

*------------------------------------------------------------------------

*/

ibput(diskdev, inum, loc)

int diskdev;

IBADDR inum;

struct iblk *loc;

{
DBADDR dba;

char *buff;

char *to, *from;

int i;

int ibsem;

dba = ibtodb(inum);

buff = getbuf(dskdbp);

ibsem = ((struct dsblk *)devtab[diskdev].dvioblk)->dibsem;

wait(ibsem);

read(diskdev, buff, dba);

to = buff + ibdisp(inum);

from = (char *)loc;

for (i=0 ; i<sizeof(struct iblk) ; i++)

*to++ = *from++;

write(diskdev, buff, dba);

signal(ibsem);

return(OK);

}

As expected, ibput allocates space for a physical disk block from the system buffer pool,
reads the appropriate physical block, copies in the changed i-block, and writes the physi-
cal block back to disk. It need not free the buffer, because the driver will free it when the
output operation completes.



-- --

330 File Systems Chap. 17

17.6.4 Allocating I-Blocks From The Free List

The file system allocates an i-block from the free list whenever it needs one for an
index, and it returns i-blocks to the free list when it deallocates a file. Procedure ibnew
obtains the next free i-block and returns its identifier. The code is found in file ibnew.c.

/* ibnew.c - ibnew */

#include <conf.h>

#include <kernel.h>

#include <io.h>

#include <disk.h>

#include <file.h>

/*------------------------------------------------------------------------

* ibnew -- allocate a new iblock from free list on disk

*------------------------------------------------------------------------

*/

ibnew(diskdev, writedir)

int diskdev;

Bool writedir;

{
struct dir *dirptr;

struct iblk iblock;

IBADDR inum;

int i;

int sem;

sem = ((struct dsblk *)devtab[diskdev].dvioblk)->dflsem;

dirptr = dsdirec(diskdev);

wait(sem);

inum = dirptr->d_filst;

ibget(diskdev, inum, &iblock);

dirptr->d_filst = iblock.ib_next;

if (writedir)

write(diskdev, dskbcpy(dirptr), DIRBLK);

signal(sem);

ibclear(&iblock, 0L);

ibput(diskdev, inum, &iblock);

return(inum);

}

Concurrency control complicates what is otherwise a simple procedure. Ibnew first ob-



-- --

Sec. 17.6 Operations On I-Blocks 331

tains exclusive use of the free list by waiting for the ‘‘free list’’ mutual exclusion sema-
phore. (Recall that the disk driver initialization routine, dsinit, created the semaphore
and placed its id in dflsem.) After obtaining access, ibnew retrieves the id of the first free
i-block from the directory. It must then update the free list by reading the first i-block
and making the directory entry point to its successor. After changing the directory, ib-
new writes a copy back to disk. Finally, ibnew clears the allocated i-block and writes it
to disk.

17.6.5 Returning I-Blocks To The Free List

When a file is deleted, its index and data blocks must be returned to their appropri-
ate free lists. Procedure iblfree performs this task. It takes an i-block address as an argu-
ment and releases the i-blocks on that list. Thus, a single call to iblfree will release all
the space used by a file.



-- --

332 File Systems Chap. 17

/* iblfree.c - iblfree */

#include <conf.h>

#include <kernel.h>

#include <io.h>

#include <disk.h>

#include <file.h>

/*------------------------------------------------------------------------

* iblfree -- free a list of iblocks given the number of the first

*------------------------------------------------------------------------

*/

iblfree(diskdev, iblist)

int diskdev;

IBADDR iblist;

{
IBADDR ilast;

struct iblk iblock;

struct dir *dirptr;

int sem;

DBADDR dba;

int j;

if (iblist == IBNULL)

return(OK);

dirptr = dsdirec(diskdev);

ibget(diskdev, iblist, &iblock);

for (ilast=iblist ; iblock.ib_next!=IBNULL ;) {
for (j=0 ; j<IBLEN ; j++)

if ( (dba=iblock.ib_dba[j]) != DBNULL)

lfsdfree(diskdev, dba);

ilast = iblock.ib_next;

ibget(diskdev, ilast, &iblock);

}
for (j=0 ; j<IBLEN ; j++)

if ( (dba=iblock.ib_dba[j]) != DBNULL)

lfsdfree(diskdev, dba);

sem = ( (struct dsblk *)devtab[diskdev].dvioblk)->dflsem;

wait(sem);

iblock.ib_next = dirptr->d_filst;

dirptr->d_filst = iblist;

ibput(diskdev, ilast, &iblock);

write(diskdev, dskbcpy(dirptr), DIRBLK);

signal(sem);



-- --

Sec. 17.6 Operations On I-Blocks 333

return(OK);

}

Iblfree moves along the list of i-blocks, calling procedure lfsdfree to free each data block.
After all data blocks have been released, iblfree links the nodes on its argument list into
the free list. To do so, it adds a pointer from the tail of the argument list to the head of
the free list, and makes the free list point to the head of its argument list. After updating
the free list pointer, iblfree writes a copy of the modified directory back to disk.
Although these operations would be simpler if the lists resided in memory, the details are
not difficult to follow.

17.7 The Directory Structure

Before plunging into the details of the file system software, we need to consider the
format of data in the directory. Obviously, the directory must contain an entry for each
file. The file entry includes the file’s name and the address of the first i-block on the
file’s index list. The directory also contains the total number of i-blocks on the disk, as
well as pointers to the lists of free blocks. Structure dir, found in file dir.h, defines the
directory layout in detail.



-- --

334 File Systems Chap. 17

/* dir.h */

#define FDNLEN 10 /* length of file name + 1 */

#define NFDES 28 /* number of files / directory */

struct fdes { /* description of each file */

long fdlen; /* length in bytes */

IBADDR fdiba; /* first index block */

char fdname[FDNLEN]; /* zero terminated file name */

};

struct dir { /* directory layout */

int d_iblks; /* i-blocks on this disk */

DBADDR d_fblst; /* pointer to list of free blks */

IBADDR d_filst; /* pointer to list of free iblks*/

int d_id; /* disk identification integer */

int d_nfiles; /* current number of files */

struct fdes d_files[NFDES]; /* description of the files */

};

struct freeblk { /* shape of block on free list */

DBADDR fbnext; /* address of next free block */

};

extern struct fdes *dfdsrch();

Because index blocks each contain a ‘‘next’’ pointer field, linking them into the free
list is easy. Normally, data blocks do not contain pointers, however, so linking them onto
a free list is not as simple. We have chosen to link free data blocks together in a singly-
linked list by storing pointers at the beginning of each. Structure freeblk in file dir.h do-
cuments this decision. Whenever the software manipulates data blocks on the free list, it
assumes they have the shape declared by this structure. For example, if disk block ad-
dresses are two bytes long, data blocks on the free list will contain a pointer to the next
block in the first two bytes.

17.8 Using The Device Switch Table For Files

The file system software must establish connections between running processes and
disk files, so that operations like read and write can be mapped onto the correct file. Ex-
actly how the system performs this mapping depends on both the size and generality
needed. To keep our system small, we will avoid introducing new software by using the
device switch machinery already in place.



-- --

Sec. 17.8 Using The Device Switch Table For Files 335

Just as with video windows, described in Chapter 14, a set of pseudo-devices have
been added to the device switch table such that each pseudo-device can be used to con-
trol a file. Just like conventional devices, these file pseudo-devices have a set of driver
routines that perform read, write, getc, putc, seek, and close operations. When a process
opens a disk file, the file system searches for a currently unused pseudo-device, sets up
the control block for that ‘‘device,’’ and returns the device identifier to the caller. After
the file has been opened, the process uses the device identifier to read or write it. The
device switch maps high-level operations to driver routines for the pseudo-device, exact-
ly as they map high-level operations onto device drivers for other devices. Finally, the
process finishes accessing the file, and calls close to break the connection and make the
pseudo-device available for use with another file. The details will become clear as we
review the code.

Just like other drivers, the file pseudo-device driver keeps a control block for each
pseudo-device. File file.h contains the pertinent declarations.



-- --

336 File Systems Chap. 17

/* file.h */

/* Local disk layout: disk block 0 is directory, then index area, and */

/* then data blocks. Each disk block (512 bytes) in the index area */

/* contains 8 iblocks, which are 64 bytes long. Iblocks are referenced */

/* relative to 0, so the disk block address of iblock k is given by */

/* truncate(k/8)+1. The offset of iblock k within its disk block is */

/* given by 64*remainder(k,8). The directory entry points to a linked */

/* list of iblocks, and each iblock contains pointers to IBLEN (29) data*/

/* blocks. Index pointers contain a valid data block address or DBNULL. */

#define EOF -2 /* value returned on end-of-file*/

#define FLREAD 001 /* fl_mode bit for "read" */

#define FLWRITE 002 /* fl_mode bit for "write" */

#define FLRW 003 /* fl_mode bits for read+write */

#define FLNEW 010 /* fl_mode bit for "new file" */

#define FLOLD 020 /* fl_mode bit for "old file" */

struct flblk { /* file "device" control block */

int fl_id; /* file’s "device id" in devtab */

int fl_dev; /* file is on this disk device */

int fl_pid; /* process id accessing the file*/

struct fdes *fl_dent; /* file’s in-core dir. entry */

int fl_mode; /* FLREAD, FLWRITE, or both */

IBADDR fl_iba; /* address of iblock in fl_iblk */

struct iblk fl_iblk; /* current iblock for file */

int fl_ipnum; /* current iptr in fl_iblk */

long fl_pos; /* current file position (bytes)*/

Bool fl_dch; /* has fl_buff been changed? */

char *fl_bptr; /* ptr to next char in fl_buff */

char fl_buff[DBUFSIZ]; /* current data block for file */

};

#ifdef Ndf

extern struct flblk fltab[];

#endif

Most of the fields in the control block make sense without explanation. Field fl_id, for
example, contains the file’s device id. Field fl_mode tells whether the file has been
opened for reading, writing, or both. (Symbolic constants FLREAD and FLWRITE iden-
tify the individual mode bits.) Field fl_dent points to the file’s directory entry; it is the
only link between the control block and the file name.



-- --

Sec. 17.8 Using The Device Switch Table For Files 337

Other fields of the file control block contain information that identifies a position in
the file and the data found at that position. Opening a file establishes a ‘‘cursor’’ that
points to the beginning of the file. As processes read or write data, the cursor moves
along through the file. At any time, field fl_pos gives the current cursor position, meas-
ured in bytes from the beginning of the file.

The control block contains enough information to enable upper-half routines to easi-
ly retrieve or modify data found at the current cursor position. Field fl_iblk contains a
copy of the i-block from the file’s index list that indexes the current position. Field
fl_ipnum identifies which pointer in the index block corresponds to the current position.
The data block in buffer fl_buff is the data block that includes the current position. Final-
ly, field fl_bptr points to the character in the buffer that is found at the current position.

17.9 Establishing A Pseudo-Device

Making a connection between a running program and a named file involves search-
ing the directory to see if the name is valid, allocating a pseudo-device, and initializing
the control block and cursor to the beginning of the file. We will examine procedures
that perform each of these tasks.

In PC-Xinu the user can specify, when opening a file, whether the file should be old
or new (i.e., whether it must or must not exist) and whether it will be read or written.
Such specifications are made by passing a mode string to the procedure that opens files.
To parse the mode string and convert it to a single integer, the open routine calls dfckmd,
shown below. Dfckmd returns an integer with mode bits set according to the symbolic
constants defined in file.h.



-- --

338 File Systems Chap. 17

/* dfckmd.c - dfckmd */

#include <conf.h>

#include <kernel.h>

#include <disk.h>

#include <file.h>

/*------------------------------------------------------------------------

* dfckmd -- parse file mode argument and generate actual mode bits

*------------------------------------------------------------------------

*/

dfckmd(mode)

char *mode;

{
int mbits;

char ch;

mbits = 0;

while (ch = *mode++)

switch (ch) {

case ’r’: if (mbits&FLREAD) return(SYSERR);

mbits | = FLREAD;

break;

case ’w’: if (mbits&FLWRITE) return(SYSERR);

mbits | = FLWRITE;

break;

case ’o’: if (mbits&FLOLD | | mbits&FLNEW)

return(SYSERR);

mbits | = FLOLD;

break;

case ’n’: if (mbits&FLOLD | | mbits&FLNEW)

return(SYSERR);

mbits | = FLNEW;

break;

default: return(SYSERR);

}
if (mbits&FLREAD == mbits&FLWRITE) /* default: allow R + W */

mbits | = (FLREAD| FLWRITE);
return(mbits);

}



-- --

Sec. 17.9 Establishing A Pseudo-Device 339

Dfckmd scans the mode string looking for occurrences of the characters ‘‘n’’ (new),
‘‘o’’ (old), ‘‘r’’ (read), and ‘‘w’’ (write). As it finds each character, it sets the appropri-
ate bit of the mode integer. If it finishes without detecting an error, it returns the result-
ing integer. Note that the mode string may specify a new file or an old file, but not both.
If neither new nor old is specified, dfckmd assumes that the user does not care whether
the file currently exists, or whether it must be created.

Once the mode string has been parsed, the directory can be searched. Procedure
dfdsrch uses the mode integer created by dfckmd. It searches for the specified file name,
creating a new file if the mode bits allow creation and the name does not exist. The code
is shown below.

/* dfdsrch.c - dfdsrch */

#include <conf.h>

#include <kernel.h>

#include <disk.h>

#include <file.h>

/*------------------------------------------------------------------------

* dfdsrch -- search disk directory for position of given file name

*------------------------------------------------------------------------

*/

struct fdes *dfdsrch(dsptr, filenam, mbits)

struct dsblk *dsptr;

char *filenam;

int mbits;

{
struct dir *dirptr;

struct fdes *fdptr;

int len;

int i;

int inum;

if ( (len=strlen(filenam))<=0 | | len>=FDNLEN)

return((struct fdes *)SYSERR);

if ( (dirptr=dsdirec(dsptr->dnum)) == (struct dir *) NULL )

return((struct fdes *)SYSERR);

for (i=0 ; i<dirptr->d_nfiles ; i++)

if (strcmp(filenam, dirptr->d_files[i].fdname) == 0)

if ( (mbits&FLNEW) != 0)

return((struct fdes *)SYSERR);

else

return(&dirptr->d_files[i]);

wait(dsptr->ddirsem);

if ( (mbits&FLOLD) | | dirptr->d_nfiles >= NFDES) {
signal(dsptr->ddirsem);



-- --

340 File Systems Chap. 17

return((struct fdes *)SYSERR);

}
inum = ibnew(dsptr->dnum, IBNWDIR);

fdptr = &(dirptr->d_files[dirptr->d_nfiles++]);

fdptr->fdlen = 0L;

strcpy(fdptr->fdname, filenam);

fdptr->fdiba = inum;

write(dsptr->dnum, dskbcpy(dirptr), DIRBLK);

signal(dsptr->ddirsem);

return(fdptr);

}

Although the code may seem confusing, it is easy to understand. Dfdsrch first
checks to see that the name is valid. It then searches the directory. If a match is found, it
uses the mode bits to determine whether an old file is allowed. If no match is found,
dfdsrch uses the mode bits to determine whether a new file is allowed. If a new file is
needed, dfdsrch creates one by adding the new name to the directory and allocating an i-
block for the file from the free list.

Once a file has been found or created, a connection to it can be established by allo-
cating a pseudo-device and initializing its control block. Procedure dfalloc allocates a
pseudo-device.

/* dfalloc.c - dfalloc */

#include <conf.h>

#include <kernel.h>

#include <disk.h>

#include <file.h>

/*------------------------------------------------------------------------

* dfalloc -- allocate a device table entry for a disk file; return id

*------------------------------------------------------------------------

*/

#ifdef Ndf

dfalloc() /* assume exclusion for dir. provided by caller */

{
int i;

for (i=0 ; i<Ndf ; i++)

if (fltab[i].fl_pid == 0) {
fltab[i].fl_pid = getpid();

return(i);

}



-- --

Sec. 17.9 Establishing A Pseudo-Device 341

return(SYSERR);

}
#endif

Allocation is straightforward. Dfalloc searches the array of pseudo-device control
blocks looking for an unused device. It checks the process id field in each pseudo-device
control block, because the process id is nonzero whenever the device is in use. When it
finds an unused device, dfalloc marks the device busy by storing the caller’s process id in
the process id field. It then returns the index of the file control block it reserved.

Procedure dsopen uses the three procedures described above to make a connection
between a running program and a disk file. It calls dfckmd to check the mode string and
convert it to an integer, dfdsrch to search the directory, and dfalloc to allocate a pseudo-
device for the file. Finally, dsopen fills in the file control block by setting the current po-
sition to zero and reading the first i-block from the file’s index list. It returns the file’s
device id to the caller, so it can be used in operations like read and write. File dsopen.c
contains the code.



-- --

342 File Systems Chap. 17

/* dsopen.c - dsopen */

#include <conf.h>

#include <kernel.h>

#include <disk.h>

#include <file.h>

/*------------------------------------------------------------------------

* dsopen -- open/create a file on the specified disk device

*------------------------------------------------------------------------

*/

#ifdef Ndf

dsopen(devptr, filenam, mode)

struct devsw *devptr;

char *filenam;

char *mode;

{
struct flblk *flptr;

struct fdes *fdptr;

DBADDR dba;

int mbits, findex;

int id;

int ps;

if ( (mbits=dfckmd(mode)) == SYSERR )

return(SYSERR);

disable(ps);

if( (int)(fdptr=dfdsrch(devptr->dvioblk,filenam,mbits)) == SYSERR

| | (findex=dfalloc()) == SYSERR ) {
restore(ps);

return(SYSERR);

}
flptr = &fltab[findex];

flptr->fl_dev = devptr->dvnum;

flptr->fl_dent = fdptr;

flptr->fl_mode = mbits & FLRW;

flptr->fl_iba = fdptr->fdiba;

ibget(flptr->fl_dev, flptr->fl_iba, &(flptr->fl_iblk));

flptr->fl_pos = 0L;

flptr->fl_dch = FALSE;

dba = flptr->fl_iblk.ib_dba[flptr->fl_ipnum = 0];

if (dba != DBNULL) {
read(flptr->fl_dev, flptr->fl_buff, dba);

flptr->fl_bptr = flptr->fl_buff;



-- --

Sec. 17.9 Establishing A Pseudo-Device 343

} else

flptr->fl_bptr = &flptr->fl_buff[DBUFSIZ];

id = flptr->fl_id;

restore(ps);

return(id);

}
#endif

As the name dsopen implies, this procedure is associated with the disk driver. The
relationship between files and the disk driver is similar to the relationship between win-
dows and the tty driver discussed in Chapter 14. In particular:

Because the directory maps names to disk files, the open operation is
associated with the disk driver, not with the individual files.

To connect to a file on disk device i, the user calls open, passing i as the device argu-
ment, the filename as the second argument, and the mode string as the third. Open uses
the device switch table to pass the call to dsopen. If dsopen is successful in opening the
file, it returns the device number of the file pseudo-device, which is used by the calling
process for accessing the file data.

17.10 Pseudo-Device Driver Routines

Like any device driver, pseudo-devices need routines that handle high-level opera-
tions like read or write. Of course, there are no lower-half routines for file pseudo-
devices because the driver never receives interrupts from a real hardware device. Instead
of starting hardware, the upper-half file routines carry out requests by performing input
and output operations on the disk device.

Although the pseudo-device drivers do not contend with real hardware, they are
quite complex because they deal with the details of buffer and index management. To
help manage the complexity, some of the work has been pushed into separate procedures;
we will consider these first. Procedures lfsnewd and lfsdfree allocate and release data
blocks. Procedure lfsnewd allocates a data block from the free list almost exactly the
same way ibnew allocated an index block. The code, found in file lfsnewd.c, needs little
further explanation.



-- --

344 File Systems Chap. 17

/* lfsnewd.c - lfsnewd */

#include <conf.h>

#include <kernel.h>

#include <disk.h>

#include <file.h>

#define DFILLER ’+’

/*------------------------------------------------------------------------

* lfsnewd -- allocate a new data block from free list on disk

*------------------------------------------------------------------------

*/

lfsnewd(diskdev, flptr)

int diskdev;

struct flblk *flptr;

{
struct dir *dirptr;

struct freeblk *fbptr;

char *buf;

int sem;

DBADDR dba;

int i;

dirptr = dsdirec(diskdev);

fbptr = (struct freeblk *) (buf = flptr->fl_buff);

sem = ((struct dsblk *)devtab[diskdev].dvioblk)->dflsem;

wait(sem);

dba = dirptr->d_fblst;

read(diskdev, fbptr, dba);

dirptr->d_fblst = fbptr->fbnext;

write(diskdev, dskbcpy(dirptr), DIRBLK);

signal(sem);

for (i=0 ; i<DBUFSIZ ; i++)

*buf++ = DFILLER;

write(diskdev, dskbcpy(fbptr), dba);

return(dba);

}

Companion procedure lfsdfree reverses the action of lfsnewd by returning a data
block to the free list. As expected, it makes the data block point to the current list and
makes the list head point to the block being deallocated. Again, the code is similar to the
code used to deallocate i-blocks.



-- --

Sec. 17.10 Pseudo-Device Driver Routines 345

/* lfsdfree.c - lfsdfree */

#include <conf.h>

#include <kernel.h>

#include <disk.h>

#include <file.h>

/*------------------------------------------------------------------------

* lfsdfree -- free a data block given its address

*------------------------------------------------------------------------

*/

lfsdfree(diskdev, dba)

int diskdev;

DBADDR dba;

{
struct dir *dirptr;

int dirsem;

struct freeblk *buf;

dirptr = dsdirec(diskdev);

dirsem = ((struct dsblk *)(devtab[diskdev].dvioblk))->dflsem;

buf = (struct freeblk *)getbuf(dskdbp);

wait(dirsem);

buf->fbnext = dirptr->d_fblst;

dirptr->d_fblst = dba;

write(diskdev, buf, dba);

write(diskdev, dskbcpy(dirptr), DIRBLK);

signal(dirsem);

return(OK);

}

Lfsdfree calls the routine dskbcpy to copy the in-core directory into a buffer for writ-
ing to disk. Recall that the dswrite routine queues the write request and returns immedi-
ately to the caller. Since dsinter ultimately calls freebuf to deallocate the buffer, dskbcpy
must allocate a buffer from the disk data buffer pool before copying the directory block
into it for writing. The dskbcpy routine, shown below, is used for the same purpose in
other routines described in this chapter.



-- --

346 File Systems Chap. 17

/* dskbcpy.c - dskbcpy */

#include <conf.h>

#include <kernel.h>

#include <disk.h>

#include <mark.h>

#include <bufpool.h>

/*------------------------------------------------------------------------

* dskbcpy -- copy data into a new disk buffer and return its address

*------------------------------------------------------------------------

*/

char *dskbcpy(oldbuf)

char *oldbuf;

{
int i;

char *newbuf, *to;

newbuf = to = getbuf(dskdbp);

for (i=0 ; i<DBUFSIZ ; i++)

*to++ = *oldbuf++;

return(newbuf);

}

17.10.1 Index Management Routines

The file system cannot afford to write a data block every time the program changes
one character. Instead, it waits until the block has been filled and a new one is needed
before writing the block to disk. The system must also write charged blocks when the
user closes the file (even if the block has not been filled), and when the user positions the
file pointer outside the current block by calling seek. Of course, the file system should
not copy the buffer to disk unless it has been changed, because disk accesses require
much time. To eliminate unnecessary writes, it uses a Boolean variable (field fl_dch in
the file control block), clearing the variable whenever a new block has been read and set-
ting it whenever the contents are changed.

Procedure lfsflush writes data from the buffer to disk if the data has been changed.
It computes the disk block address of the current buffer by looking in the i-block (field
fl_iblk) and writes a copy of the buffer to that address. The code is found in file
lfsflush.c.



-- --

Sec. 17.10 Pseudo-Device Driver Routines 347

/* lfsflush.c - lfsflush */

#include <conf.h>

#include <kernel.h>

#include <disk.h>

#include <file.h>

/*------------------------------------------------------------------------

* lfsflush -- flush data and i-block for a file

*------------------------------------------------------------------------

*/

lfsflush(flptr)

struct flblk *flptr;

{
DBADDR dba;

if ( flptr->fl_dch == FALSE )

return;

dba = flptr->fl_iblk.ib_dba[flptr->fl_ipnum];

write(flptr->fl_dev, dskbcpy(flptr->fl_buff), dba);

flptr->fl_dch = FALSE;

return;

}

Another procedure that helps manage the index is named lfsetup. Lfsetup positions a
file at a specified location by finding the correct index block and data block. It starts
with the current i-block and moves along the index list until it finds the correct i-block.
The index list is singly-linked, so if the desired position lies before the region covered by
the current index block, lfsetup moves to the file’s first index block before it begins the
search. Once the correct index block has been read into memory, lfsetup determines
which data block pointer to use by moving to the correct entry in the i-block. After ex-
tracting the data block address, it reads a copy of the data block into the buffer. Finally,
it positions the buffer pointer to the desired byte within the buffer. The code is shown
below.



-- --

348 File Systems Chap. 17

/* lfsetup.c - lfsetup */

#include <conf.h>

#include <kernel.h>

#include <disk.h>

#include <file.h>

/*------------------------------------------------------------------------

* lfsetup -- set up appropriate iblock and data block in memory

*------------------------------------------------------------------------

*/

lfsetup(diskdev, flptr)

int diskdev;

struct flblk *flptr;

{
struct iblk *ibptr;

int displ, i;

long ibrange;

IBADDR nextib;

DBADDR dba;

ibrange = (long) (IBLEN * DBUFSIZ);

ibptr = &flptr->fl_iblk;

if (flptr->fl_pos < ibptr->ib_byte) {
flptr->fl_iba = (flptr->fl_dent)->fdiba;

ibget(diskdev, flptr->fl_iba, ibptr);

}
while (ibptr->ib_byte+ibrange <= flptr->fl_pos) {

if (ibptr->ib_next == IBNULL) {
ibptr->ib_next = ibnew(diskdev, IBWDIR);

ibput(diskdev, flptr->fl_iba, ibptr);

flptr->fl_iba = ibptr->ib_next;

ibclear(ibptr, (long)ibptr->ib_byte+ibrange);

ibput(diskdev, flptr->fl_iba, ibptr);

} else {
flptr->fl_iba = ibptr->ib_next;

ibget(diskdev, flptr->fl_iba, ibptr);

}
}
displ = (int) (flptr->fl_pos - ibptr->ib_byte);

for (flptr->fl_ipnum=0 ; displ>=DBUFSIZ ; displ-=DBUFSIZ)

flptr->fl_ipnum++;

flptr->fl_bptr = flptr->fl_buff + displ;

if ( (dba=ibptr->ib_dba[flptr->fl_ipnum]) == DBNULL) {



-- --

Sec. 17.10 Pseudo-Device Driver Routines 349

ibptr->ib_dba[flptr->fl_ipnum] = lfsnewd(diskdev,flptr);

ibput(diskdev, flptr->fl_iba, ibptr);

} else

read(diskdev, flptr->fl_buff, dba);

flptr->fl_dch = FALSE;

}

17.10.2 The Pseudo-Device Seek Routine

The seek operation moves the current file position to a given location without
transferring data. Procedure lfseek, shown below, implements the seek operation. First,
it checks to see if the buffer has been modified and writes a copy to disk if it has been. It
then verifies that the specified position is valid. If the request is valid, lfseek updates the
current file position (fl_pos), and calls lfsetup to locate the correct i-block.



-- --

350 File Systems Chap. 17

/* lfseek.c - lfseek */

#include <conf.h>

#include <kernel.h>

#include <disk.h>

#include <file.h>

/*------------------------------------------------------------------------

* lfseek -- seek to a specified position of a file

*------------------------------------------------------------------------

*/

lfseek(devptr, offset)

struct devsw *devptr;

long offset;

{
struct flblk *flptr;

int retcode;

int ps;

disable(ps);

flptr = (struct flblk *)devptr->dvioblk;

if (flptr->fl_mode & FLWRITE) {
if (flptr->fl_dch)

lfsflush(flptr);

} else if (offset > (flptr->fl_dent)->fdlen) {
restore(ps);

return(SYSERR);

}
flptr->fl_pos = offset;

lfsetup(flptr->fl_dev, flptr);

restore(ps);

return(OK);

}

17.10.3 The Pseudo-Device Getc Routine

Once a file has been opened and the index is in place, input from the file is trivial. It
consists of extracting the next character from the buffer and advancing the buffer pointer.
Procedure lfgetc, shown below, performs the operation.



-- --

Sec. 17.10 Pseudo-Device Driver Routines 351

/* lfgetc.c - lfgetc */

#include <conf.h>

#include <kernel.h>

#include <proc.h>

#include <disk.h>

#include <file.h>

/*------------------------------------------------------------------------

* lfgetc -- get next character from (buffered) disk file

*------------------------------------------------------------------------

*/

lfgetc(devptr)

struct devsw *devptr;

{
struct flblk *flptr;

char nextch;

int ps;

disable(ps);

flptr = (struct flblk *)devptr->dvioblk;

if (flptr->fl_pid!=currpid | | !(flptr->fl_mode&FLREAD)) {
restore(ps);

return(SYSERR);

}
if (flptr->fl_pos >= (flptr->fl_dent)->fdlen) {

restore(ps);

return(EOF);

}
if (flptr->fl_bptr >= &flptr->fl_buff[DBUFSIZ]) {

if (flptr->fl_dch)

lfsflush(flptr);

lfsetup(flptr->fl_dev, flptr);

}
nextch = *(flptr->fl_bptr)++;

flptr->fl_pos++;

restore(ps);

return( ((int)nextch) & 0xff );

}

When called, lfgetc checks to see that the invoking process owns the pseudo-device
and that the file has been opened for reading. It then checks to see if the current position
lies beyond the end of the file and returns a value indicating end-of-file (EOF) if it does.
If end of file has not been reached, lfgetc checks to see if the buffer pointer points beyond



-- --

352 File Systems Chap. 17

the current buffer and moves to the next data block if necessary. Finally, after it has po-
sitioned the buffer pointer correctly, lfgetc returns the next character from the buffer.

17.10.4 The Pseudo-Device Putc Routine

Procedure lfputc writes a single character to an open file. Like lfgetc, it checks the
file status and moves to a new buffer if the current one is full. It then deposits the char-
acter and sets fl_dch to indicate that the buffer has been changed. Note that lfputc merely
accumulates characters in the buffer; it does not write the buffer to disk each time it
changes. The buffer will only be copied to disk when the current position moves to
another disk block.

/* lfputc.c - lfputc */

#include <conf.h>

#include <kernel.h>

#include <proc.h>

#include <disk.h>

#include <file.h>

/*------------------------------------------------------------------------

* lfputc -- put a character onto a (buffered) disk file

*------------------------------------------------------------------------

*/

lfputc(devptr, ch)

struct devsw *devptr;

char ch;

{
struct flblk *flptr;

int ps;

disable(ps);

flptr = (struct flblk *) devptr->dvioblk;

if (flptr->fl_pid != currpid | | !(flptr->fl_mode&FLWRITE)) {
restore(ps);

return(SYSERR);

}
if (flptr->fl_bptr >= &flptr->fl_buff[DBUFSIZ]) {

if (flptr->fl_dch)

lfsflush(flptr);

lfsetup(flptr->fl_dev, flptr);

}
flptr->fl_pos++;

if ( flptr->fl_pos > (flptr->fl_dent)->fdlen )



-- --

Sec. 17.10 Pseudo-Device Driver Routines 353

(flptr->fl_dent)->fdlen = flptr->fl_pos;

*(flptr->fl_bptr)++ = ch;

flptr->fl_dch = TRUE;

restore(ps);

return(OK);

}

17.10.5 The Pseudo-Device Read Routine

Procedure lfread implements the read operation. It reads zero or more characters
into a specified buffer by calling lfgetc repeatedly, as shown below. This implementation
was chosen because it was easy to code; the exercises suggest redesigning it to improve
the efficiency.



-- --

354 File Systems Chap. 17

/* lfread.c - lfread */

#include <conf.h>

#include <kernel.h>

#include <disk.h>

#include <file.h>

/*------------------------------------------------------------------------

* lfread -- read from a previously opened disk file

*------------------------------------------------------------------------

*/

lfread(devptr, buff, count)

struct devsw *devptr;

char *buff;

int count;

{
int done;

int ichar;

if (count < 0)

return(SYSERR);

for (done=0 ; done < count ; done++)

if ( (ichar=lfgetc(devptr)) == SYSERR)

return(SYSERR);

else if (ichar == EOF ) { /* EOF before finished */

if (done == 0)

return(EOF);

else

return(done);

} else

*buff++ = (char) ichar;

return(done);

}

17.10.6 The Pseudo-Device Write Routine

Procedure lfwrite implements the write operation by writing a sequence of zero or
more bytes. Like lfread, it calls a single-character (lfputc, in this case) routine to perform
the output operation. File lfwrite.c contains the code.



-- --

Sec. 17.10 Pseudo-Device Driver Routines 355

/* lfwrite.c - lfwrite */

#include <conf.h>

#include <kernel.h>

/*------------------------------------------------------------------------

* lfwrite -- write ’count’ bytes onto a local disk file

*------------------------------------------------------------------------

*/

lfwrite(devptr, buff, count)

struct devsw *devptr;

char *buff;

int count;

{
int i;

if (count < 0)

return(SYSERR);

for (i=count; i>0 ; i--)

if (lfputc(devptr, *buff++) == SYSERR)

return(SYSERR);

return(count);

}

17.10.7 The Pseudo-Device Close Routine

When a process finishes using a file, it must call close to flush unwritten buffers out
to disk and detach the file from the process. Procedure lfclose implements the close
operation. It performs exactly as expected: it calls lfsflush to write data from the buffer if
necessary, and assigns the process id field in the file control block zero to indicate that
the pseudo-device can be used again. After it writes the data blocks to disk, lfclose
writes a copy of the directory to disk in case the file length recorded in the directory en-
try was changed. The details are shown below in file lfclose.c.



-- --

356 File Systems Chap. 17

/* lfclose.c - lfclose */

#include <conf.h>

#include <kernel.h>

#include <proc.h>

#include <disk.h>

#include <file.h>

/*------------------------------------------------------------------------

* lfclose -- close a file by flushing output and freeing device slot

*------------------------------------------------------------------------

*/

lfclose(devptr)

struct devsw *devptr;

{
struct dsblk *dsptr;

struct dir *dirptr;

struct flblk *flptr;

int diskdev;

int ps;

disable(ps);

flptr = (struct flblk *) devptr->dvioblk;

if (flptr->fl_pid != currpid) {
restore(ps);

return(SYSERR);

}
diskdev = flptr->fl_dev;

dsptr = (struct dsblk *)devtab[diskdev].dvioblk;

dirptr = (struct dir *) dsptr->ddir;

if ( (flptr->fl_mode & FLWRITE) && flptr->fl_dch)

lfsflush(flptr);

flptr->fl_pid = 0;

dsptr->dnfiles--;

write(diskdev, dskbcpy(dirptr), DIRBLK);

restore(ps);

return(OK);

}



-- --

Sec. 17.10 Pseudo-Device Driver Routines 357

17.10.8 The Pseudo-Device Initialization Routine

Although procedure dsopen initializes most of the entries in the file control block
when it opens a file, some initialization is required at system startup. As in most drivers,
the initialization routine assigns field fl_id in the file control block the device id that the
high-level routines call to access the file. It also initializes field fl_pid to zero, indicating
that the pseudo-device is not in use. The pseudo-device initialization routine also places
a pointer to the file control block in the device switch table (field dvioblk), so the upper-
half routines can find the correct control block. These details are all handled by pro-
cedure lfinit, as shown below.

/* lfinit.c - lfinit */

#include <conf.h>

#include <kernel.h>

#include <disk.h>

#include <file.h>

#ifndef Ndf

#define Ndf 1

#endif

struct flblk fltab[Ndf];

/*------------------------------------------------------------------------

* lfinit -- mark disk file ’device’ available at system startup

*------------------------------------------------------------------------

*/

lfinit(devptr)

struct devsw *devptr;

{
struct flblk *flptr;

devptr->dvioblk = (char *)(flptr = &fltab[devptr->dvminor]);

flptr->fl_pid = 0;

flptr->fl_id = devptr->dvnum;

return(OK);

}



-- --

358 File Systems Chap. 17

17.11 Summary

The file system manages an abstract name space in which objects correspond to disk
files, devices, or operating system services. This chapter concentrated on the part of the
file system software that manages data files on secondary storage. To keep the interface
to files the same as the interface to devices, the software is organized into a pseudo-
device driver that supports read, write, getc, putc, seek and close operations. When a
process opens a file, the software establishes a connection to it through the device switch
table, allowing the high-level I/O routines to access the file driver, just as they access
hardware device drivers.

Our design allows multiple files to grow concurrently by using an index to keep
track of the data blocks associated with each file. The index for a file consists of a
singly-linked list of nodes called i-blocks, where each i-block contains pointers to a set of
data blocks. When a file is opened, the driver software reads its first index block into
memory. It also reads a copy of the first data block if the file is nonempty. Subsequent
accesses or changes affect the buffer in memory. Only when the file position moves out-
side the current buffer does the file system copy the buffer back to disk and read another.

Concurrency control, as well as the details of index and buffer management, make
the file system software large and complex. The large volume of detail has been handled
by dividing the driver into small pieces. We have also chosen to make the system
simpler by limiting concurrent access to a file.

FOR FURTHER STUDY

Literature on file systems abounds. Knuth [1973] describes several data structures
used for indexes. The search method described here is an indexed sequential file where
the offset in the file is the key; it is a simplification of the UNIX file system described by
Ritchie and Thompson [1974]. Broader descriptions of file system alternatives can be
found in Calingaert [1982], Habermann [1976], and Peterson and Silberschatz [1983].
Some of these authors distinguish between the terms file system, using it to refer to the
lowest layer of file manipulation software, and directory system, using it to refer to the
mapping of names onto files.

EXERCISES

17.1 The number of index blocks is important because having too many blocks wastes space
that could be used for data, while having too few makes it impossible to allocate all space
to files. Given that there are 29 data block pointers in an i-block and that 8 i-blocks fill a
disk block, how many index blocks might be needed for a disk of n total blocks if the
directory can hold k files?



-- --

Exercises 359

17.2 Write a routine to make an empty PC-Xinu file system on a formatted disk having 720
disk blocks (sectors). You will need to arrange for the directory (one block, 28 directory
entries), the index area, and the data area. Use the previous exercise to determine the
number of disk blocks needed for the index area.

17.3 Write a routine to print the directory of a PC-Xinu file system disk.

17.4 Redesign routines lfread and lfwrite to perform high-speed copies like the tty read and
write routines.

17.5 Consider what happens when two processes open the same file and begin writing on it.
Rewrite the code to prevent the problem.

17.6 Free data blocks are chained together on a singly-linked list. Redesign the software to use
an index for them (i.e., link them into a giant ‘‘file’’ made up of free blocks).

17.7 What are the maximum number of disk accesses necessary to allocate/free a data block
under the current scheme, and the scheme suggested in the previous problem? The aver-
age number of accesses?

17.8 The size of index i-blocks is as important as the number of them. Does the distribution of
file sizes on your local computer system suggest how the i-block size was chosen?

17.9 Rewrite the code that handles process termination so it closes all files associated with the
terminating process.

17.10 Change the system to separate the file switch table from the device switch table. Make the
directory contain a field for each name, telling whether that name refers to a conventional
file or a device.

17.11 Discuss the advantages and disadvantages of adopting the convention that all entries in the
device switch table above position NDEVS are files.

17.12 Copying data among buffers can be expensive. Modify the disk driver and file system
procedures to use int pointers in place of char pointers when copying data, and measure
the resulting speed-up.

17.13 Lfclose modifies the directory block but does not do so in a critical section under control
of the directory semaphore dirsem. Modify lfclose to correct this.

17.14 When opening a nonempty file, dsopen reads the first block of the file into the data buffer.
Under what circumstances can this be considered inefficient? Modify dsopen so that it
will not read the first block.

17.15 If a file is to be read (written) sequentially (i.e., no seek operations), the file system can be
reading (writing) the next (previous) data block into another buffer, while a process is
manipulating data in the current block. Such a scheme is called double buffering. Modify
the file system design to allow for double buffering.

17.16 When is double buffering disadvantageous?

17.17 Design the file system to switch to or from double buffering automatically based on
whether a file is being accessed sequentially. Can the file system reliably and efficiently
determine whether a file is being accessed sequentially?


