
Appendix 2

PC-Xinu Programmer’s
Manual

Version 6pc

(XINU IS NOT UNIX)

The PC-Xinu Programmer’s Manual contains a description of the PC-Xinu software.
It has been divided into three sections, following the style of the UNIX Programmer’s
Manual. This introduction explains how to compile, link, and execute a program that
uses PC-Xinu. It also contains a set of informal implementation notes that characterize
PC-Xinu.

The body of the manual gives a terse description of PC-Xinu procedures and the de-
tails of their arguments − it is intended as a quick reference for programmers, not as a
way to learn PC-Xinu. Section 1 describes the config program that runs on the host
operating system. Section 2 describes PC-Xinu system procedures that programs call to
invoke operating system services. (The system calls supported by PC-Xinu include all
system calls available for the original LSI-11 version plus a few additional PC-specific
services). Section 3 describes additional procedures available from the PC-Xinu library.
From the programmer’s point of view, there is little distinction between library routines
and system calls; the distinction is preserved here to help beginners understand the subtli-
ties.

As in the UNIX manual, each page describes one command, system call, or library
routine; section numbers appear in the page footer as ‘‘(digit)’’ following the name of the
program. Within a section all pages are arranged in alphabetical order. References have
the same form as headers (e.g., ‘‘getc(2)’’ refers to the page for ‘‘getc’’ in section 2).
Related commands are sometimes mentioned on one page (which may make it difficult
for beginners to find them).

429

-- --

430 PC-Xinu Programmer’s Manual App. 2

A Short Introduction To PC-Xinu
and the Host Development Software

How to Use PC-Xinu

Overview. PC-Xinu was developed using MS-DOS on a PC, which is the same
machine on which PC-Xinu runs. To run PC-Xinu, you create, compile and link a source
file under MS-DOS, and run the resulting executable file.

Host Development environment. To run the software you will need an IBM
PC/XT/AT or compatible running MS-DOS version 2.1 or higher (version 3.0 or higher
recommended). Also recommended is a hard disk system with at least 5 megabyes
storage capacity. The MS-DOS host development system contains a C compiler, assem-
bler, linker, and ‘make’ facility. The Microsoft versions of these are called MSC, masm,
LINK, and make, respectively. The Turbo C compiler tcc may be used in place of the
Microsoft C compiler. (These names may be typed in uppercase as well.) The versions
used for development of PC-Xinu are given in the following table:

���
Program Version���
MSC 4.00���
MASM 4.00���
MAKE 4.02���
LINK 3.06���
TCC 1.00���

		
	
	
	
	
	
	
	

		
	
	
	
	
	
	
	

		
	
	
	
	
	
	
	

Compiling programs. The command msc invokes the Microsoft C compiler, and
translates a C program with extension .c into an object module with extension .obj. The
Turbo C compiler command is tcc. Link is used to combine this object module and the
PC-Xinu library xinu.lib into an executable program. There must be one external routine
named xmain, which becomes the user process executed after PC-Xinu initialization.

Running and terminating PC-Xinu. When you execute your program, the system
prints initialization information, after which you are asked to press any key to begin exe-
cution of the program you created. Even if your program terminates, PC-Xinu will still
be active, since there are a number of server processes which under ordinary cir-
cumstances do not get killed. To return to the host operating system, key Ctrl-Break. In
some cases your program may crash, and you may find it necessary to reboot the entire
system. Debugging a crashed system is not easy, since the normal MS-DOS debugging
tools are not effective when used with interrupt-driven software.

-- --

Introduction and Design Notes 431

An Example

Create a C program. For example, here is a C program example.c that prints the
string ‘‘Hello world.’’ on the console terminal and exits. (Printf is a system (library) pro-
cedure that prints formatted strings on the console; other system commands are described
in sections 2 and 3 of this manual):

/* example.c example C program (stored in file example.c) */

#include <conf.h>
#include <kernel.h>

xmain()
{

printf("Hello world.\n");
}

Compile, link and run. Compile the program, link it with the PC-Xinu library, and run it
with the following commands:

msc example /FPa /I . ;
link example,,nul,..\lib\xinu;
example

If you are using the Turbo C compiler, use the following commands (the link command
has been shown on two lines to fit it into the text; enter only one line when typing it to
the computer):

tcc -c -DTURBOC example
link \turboc\lib\c0s+example,example,nul,

..\lib\xinu+\turboc\lib\cs+\turboc\lib\maths
example

The compiler will compile the C program example.c, producing an object module
example.obj. When using the Microsoft C compiler, the switch /FPa directs the compiler
to use the software arithmetic package, and the switch /I followed by a dot informs the
compiler to search for #include files in the current directory. The switch -DTURBOC
used with Turbo C directs the compiler to define the symbol TURBOC. We define the
TURBOC symbol to make it possible to select one version of code for either the Turbo C
or Microsoft C compilers.

The linker will combine the example.obj file with library routines in xinu.lib as well
as some standard Microsoft C or Turbo C libraries to produce an executable file
example.exe. The Microsoft linker looks at the MS-DOS LIB environment variable to
find the location of the default Microsoft C library used to create the executable file. In

-- --

432 PC-Xinu Programmer’s Manual App. 2

the Microsoft C development of PC-Xinu, we set the LIB environment variable as fol-
lows:

set LIB=c: \ msc \ lib

The Turbo C compiler uses the turboc.cfg file to identify default directories.
Invoking example runs the program example.exe. When your program begins exe-

cution you will see a few PC-Xinu system startup messages followed by the program out-
put. When you key Ctrl-Break to terminate your program, you will see a system termina-
tion message. The output is:

Initializing . . .
Disk read error 80H reading drive 0

PC-Xinu Version 6pc (1-Dec-87)
64484 real mem
16360 base addr
48124 avail mem

Hit any key to continue . . .

Hello world.
@̂

-- system halt --

PC-Xinu terminated with 3 processes active
Returning . . .

The ‘‘Disk read error’’ message comes from having no disk in drive 0 (drive A); if you
have a disk in drive 0, you will not get this message. After responding to the request to
‘‘Hit any key’’, the screen will clear and the program will begin execution. In this case,
the ‘‘Hello world.’’ message will be printed and the system will appear to hang. The
Ctrl-Break key is used to return control to MS-DOS and echoes as ‘‘ˆ@’’; the messages
beginning with ‘‘-- system halt --’’ will be printed before returning to MS-DOS.

PC-Xinu Directory Organization

The PC-Xinu software distribution disks available from the publisher contain all the
software from this book. Source files are included. The disks come with instructions
needed to install and use the software.

Directories on the distribution disks are described below. Usually, the PC-Xinu
software is rooted in the directory \ pcxinu , although this is not necessary.

-- --

Introduction and Design Notes 433

Disk 1:
src All system source files

Disk 2:
config PC-Xinu configuration and sources

examples Example programs from Chapter 1

util Undocumented disk file utilities

Disk 3:
test Sample test files (sources and executables)

lib The PC-Xinu library

Disk 4:
PC-Xinu formatted disk (not readable by MS-DOS)

-- --

434 PC-Xinu Programmer’s Manual App. 2

Xinu Design Notes

(Updated 1/82, 3/82, 11/82, 3/83, 7/87)

These are the notes kept during implementation; they are not designed as an accu-
rate introduction to PC-Xinu. In particular, deferred operations (e.g., deferred process
termination) have disappeared from the book version along with the pmark process table
entry even though they remain in version 5.

Some quick ideas:

- There are multiple processes.
- A process is known by its process id.
- The process id is an index into the process table.
- There are counting semaphores.
- A semaphore is known by its index in the semaphore table.
- There is a line time clock.
- The system schedules processes based on priority.
- The system supports I/O.
- For tty I/O, characters are queued on input and output. The normal mode includes

echoing, erasing backspace, etc.
- There is support for non-overlapping screen windows which behave just like tty

devices.
- There is a file system that supports concurrent growth of files without prealloca-

tion; it has only a single-level directory structure.
- MS-DOS files can be accessed directly through PC-Xinu I/O calls.
- There is a one-word message passing mechanism (a ‘‘word’’ is large enough to

hold a pointer).
- There is support for self-initializing routines (memory marking) that makes it un-

necessary for the kernel to call initialization routines explicitly.
- Processes can create processes, kill processes, suspend processes, restart processes,

and change the priority of processes.
- There is no real memory management, but there are primitives for acquiring and re-

turning memory from the global pool, and a way to suballocate smaller pools of
fixed-size buffers.

- There is a configuration program, config, to generate a PC-Xinu system according
to specifications given in the file pcxconf.

Discussion of implementation:

0. Files. The system sources are organized as a set of procedures. For the most part,
there is a file for each system call (e.g., chprio.c for the system call chprio). In ad-
dition to the system call procedures, a file may contain utility functions needed by

-- --

Introduction and Design Notes 435

that system call. Files which do not correspond to system calls, utility procedures
or device driver routines are listed below (in order of their appearance in the book)
along with a brief description of each:

kbdio.h BIOS constants and function declarations for keyboard routines.
kbdio.asm Access to keyboard interrupt functions.
vidio.h BIOS constants and function declarations for video routines.
vidio.asm Access to video interrupt functions.
dskio.h BIOS constants and function declarations for floppy disk routines.
dskio.asm Access to disk interrupt functions.
dio.c Sector-oriented disk read/write routines.
q.h Queue data structure declaration (see below); defined macros for queue

predicates.
queue.c Queue manipulation routines.
insert.c Insert a process into a queue in key order.
getitem.c Remove the first or last item from a list.
newqueue.cInitialize a new list in the queue structure.
proc.h Process table entry structure declaration; state constants.
resched.c Almost the inner-most routine (rescheduler). It selects the next process

to run from the ready queue and fixes up the state. Calls ctxsw to
switch contexts.

cxtsw.asm The routine that actually changes the executing process into another
one. A very small piece of assembler code with only one trick: when a
process is saved, the execution address at which it restarts is actually
the instruction following the call to ctxsw.

ready.c Make a process eligible for CPU service.
eidi.asm Procedures to enable/disable CPU interrupts.
xdone.c Terminate PC-Xinu and return to MS-DOS.
kernel.h General symbolic constants; miscellaneous defined macros.
userret.c The routine to which user processes return (i.e. exit) if they ever do.

Care should be taken so that userret never exits; it must kill the process
that runs it because there is no legal return frame on the stack.

sem.h Semaphore table entry structure declaration; semaphore constants.
mem.h Memory management free list format declarations.
io.h General user-level I/O definitions.
intmap.asm Interrupt dispatch table and routine.
xeidi.asm Routines to enable/disable PC-Xinu interrupt handling.
bios.h Low-level BIOS definitions.
insertd.c Procedure to insert process in sleep queue (delta list).
sleep.h Definitions for real-time delay software.
clkint.c Clock interrupt service routine.
wakeup.c Procedure to remove awakened processes from the sleep queue.
ssclock.c Procedures to stop/start defer mode for the real-time clock.
clkinit.c Routine to initialize the real-time clock.

-- --

436 PC-Xinu Programmer’s Manual App. 2

conf.h Generated constants including I/O and size constants; do not edit
directly.

ioerr.c Generic I/O procedure which always returns SYSERR.
ionull.c Generic I/O procedure which always returns OK.
conf.c Generated file of initialized variables; do not edit directly.
map.c Procedures to initialize and restore intmap entries.
tty.h Tty line discipline control block and buffers, excluding sizes.
writcopy.c Memory-to-memory copy for transfer from a user buffer to the tty out-

put buffer.
readcopy.c Memory-to-memory copy for transfer from the tty input buffer to a

user buffer.
initiali.c All external (global) variables, the null process (process 0, see below),

and the high-level system initialization routine (e.g., to craft the process
table entry for process 0).

stack.asm Routines to manage stack limit checking.
window.h Window control block and buffers, similar to tty.h.
lwbord.c Parse the window border string and return window coordinates.
lwattr.c Parse the window attribute string and return the modified attributes.
pcscreen.c Routines to access BIOS screen handling functions.
wputcsr.c Position the cursor relative to window coordinates.
mark.h Memory marking table declarations.
bufpool.h Buffer pool constants and format.
ports.h Definitions for communication ports (queued interprocess rendezvous

points).
ptclear.c Utility routine to clear a message port.
disk.h Disk driver control block.
iblock.h Layout of index block (i-block).
dir.h Layout of disk directory block.
file.h Definitions of variables and constants used by the local file system rou-

tines.
doscall.c Routines to access low-level MS-DOS file functions.
mffile.h Definitions for MS-DOS file devices.
doprnt.c Output formatter for printf, kprintf etc.
butler.h Definitions for the *BUTLER* process.
butler.c Code for the *BUTLER* process.
cbrkint.c Ctrl-Break interrupt handler.
psnap.c Process snapshot routine.
tsnap.c Tty queue snapshot routine.
dsnap.c Disk queue snapshot routine.
pcxconf The file of device and constant information as edited by the user to

describe the hardware; the config program takes this file and produces
conf.c and conf.h files.

-- --

Introduction and Design Notes 437

1. Process states. Each process has a state given by the pstate field in the process
table entry. The state values are given by symbolic constants PRxxxx. PRFREE
means that the process entry is unused. PRREADY means that the process is
linked into the ready list and is eligible for the CPU. PRWAIT means that the pro-
cess is waiting on a semaphore (given by psem). PRSUSP means that the process
is in hibernation; it is not on any list. PRSLEEP means that the process is in the
queue of sleeping processes waiting to be awakened. PRCURR means that the pro-
cess is (the only one) currently running. The currently running process is NOT on
the ready list.

2. Semaphores. Semaphores reside in the array semaph. Each entry in the array
corresponds to a semaphore and has a count (scount), and state (sstate). The state
is SFREE if the semaphore slot is unassigned, SUSED if the semaphore is in use.
If the count is -p then the sqhead and sqtail fields point to a FIFO queue of p
processes waiting for the semaphore. If the count is nonnegative p, then no
processes are waiting. More about the head and tail pointers below.

3. Suspension. Suspended processes are forbidden from using the CPU. They may
remain on semaphore/sleep queues until they are to be moved to the ready queue.
Suspending a process that is already on the ready queue will remove it. Suspend-
ing the current processes forces it to give up the CPU. A call to ready(p), where p
has been marked suspended, will place it on the ready queue.

4. Sleeping. When a process calls sleep(n) it will be delayed n seconds. This is
achieved by placing the process on a queue of jobs ordered by wakeup time and re-
linquishing the CPU. With each clock tick, the real-time clock will interrupt the
CPU and cause a clock interrupt routine to be called. Ticks occur approximately
18.2 times per second. The interrupt handler moves processes back to the ready
queue when their wakeup time has been reached. Notice that a process may put it-
self, but no one else, to sleep.

5. Queues and ordered lists. There is one data structure for all heads, tails, and ele-
ments of queues or lists of processes: q []. The first NPROC entries in q (0 to
NPROC-1) correspond to the NPROC processes. If one wants to link process i
onto a queue or list, then one uses q [i].qnext and q [i].qprev as the forward and
backward pointers.

The remaining entries in q are used for the heads and tails of lists. The integer
nextqueue always points to the next available entry in q to assign. When initialize
builds the heads and tails of various lists, it assigns entries in q sequentially. Thus,
the sqhead and sqtail fields of a semaphore are really the indices of the head and
tail of the list in q. The advantage of keeping all heads and tails in the same data
structure is that enqueuing, dequeueing, testing for empty/nonempty, and removing
from the middle (eg., when a process is killed) are all handled by a small set of
simple procedures (files queue.c and q.h). An empty queue has the head and tail
pointing to each other. Since all real items have index less than NPROC, testing
whether a list is empty becomes trivial. In addition to FIFO queues, q also contains

-- --

438 PC-Xinu Programmer’s Manual App. 2

ordered lists based on an integer kept in the qkey field. For example, processes are
inserted in the ready list (head at position q [rdylist]) based on their priority. They
are inserted in the sleep list based on wakeup time. Ordered lists are always in as-
cending order with the inserted item stuck in before those with an equal key. Thus,
processes are removed from the ready list from the tail to get the highest priority
process. Also, processes of equal priority are scheduled round robin. Since the
sleep queues are serviced from the smallest to largest keys, items are removed from
the head of the queue (equal keys do not matter for sleeps).

6. Process 0. Process 0 is a null process that is always available to run or is running.
Care must be taken so that process 0 never executes code that could cause its
suspension (e.g. it cannot wait for a semaphore). Since Process 0 may be running
during interrupts, this means that interrupt code may never wait for a semaphore.
Process 0 initializes the system, creates the first user process, starts it executing the
main program, and goes into an infinite loop waiting until an interrupt. Because its
priority is lower than that of any other process, the null process loop executes only
when no other process is ready.

-- --

Sec. 1 Development Commands 439

Section 1: Development Commands

This section of the manual describes the PC-Xinu development commands that run under
the host operating system and that are used to create a PC-Xinu executable program. The
only command described here is the PC-Xinu configuration generator config. Consult
vendor documentation for information about the C compiler, assembler, library, and
linker utilities.

INTRO(1) PC-Xinu Programmer’s Manual INTRO(1)

-- --

440 PC-Xinu Programmer’s Manual App. 2

NAME
config − PC-Xinu configuration generator

SYNOPSIS
config [-f ifile] [-c cfile] [-h hfile]

DESCRIPTION
Config generates the device configuration files conf.c and conf.h from the configura-
tion description file pcxconf.

If the -f ifile command-line parameter is present, the input file is taken from the file
ifile instead of the default pcxconf. If the -c cfile parameter is present, cfile will be
used in place of conf.c for output. If the -h hfile parameter is present, hfile will be
used in place of conf.h for output.

The configuration description file-- which is ordinarily pcxconf --is divided into
three sections, separated from each other with a ‘%’ character, following the format
below:

device class and type declarations
%
device definitions
%
configuration constants

White space and standard C comments of the form /∗...∗/ are ignored in the first two
sections.

A device class and type declaration has the form

class: [on typ] [-op function]∗ [addr= value]∗

where items in brackets are optional, and an asterisk ‘∗’ means that zero or more
fields may be present. The class field is a device class identifier (usually lowercase),
and the typ field is a device type identifier within that device class (usually upper-
case). Identifiers must conform to C identifier conventions. A device class declara-
tion may have more than one device type; in this case, the device class identifier
appears only once, and each type declaration must begin with an ‘on typ’ field. If
there is only one type corresponding to a device class, the ‘on typ’ field may be
omitted.

An -op field in a device class declaration may be one of the following:

-i -o -c -r -w -s -g -p -n -iint -oint

The function identifiers following these operations are device-specific functions

CONFIG (1) Xinu Programmer’s Manual CONFIG (1)

-- --

Section 1 Development Commands 441

corresponding to the abstract operations dvinit, dvopen, dvclose, dvread, dvwrite,
dvseek, dvgetc, dvputc, dvcntl, and the interrupt service routines dviint, and dvoint,
respectively, as defined in the device switch table devtab.

An addr= field in a device class declaration may be one of the following address
designators:

name= port= ivec= ovec=

The value fields following these address designators are device-specific addresses
corresponding to the fields dvname, dvport, dvivec and dvovec, respectively, in
devtab. The value argument may be a constant identifier, an integer (in decimal,
octal or hexadecimal C format) or a string enclosed in double quotes which evaluates
to a constant, except that the value corresponding to name= must be either an iden-
tifier or a quoted string of length less than 10.

The values given in this declaration section will be used as defaults when defining
actual devices.

If a operation -op is missing in a device class declaration, it defaults to ioerr. Simi-
larly, if an address designator addr= is missing, it defaults to zero (except that if a
name designator name= is missing, it defaults to the empty string).

The device definition section is used to create device entries in the device switch
table devtab in the file conf.c. Each device definition is given a device number which
are assigned consecutively starting with zero. In addition, the number of devices
corresponding to each device class is counted and is recorded in the file conf.h in the
form

#define Nclass number

where class is the device class name and number is the number of actual devices
belonging to that class as defined in the device definition section. If there are no
devices defined for a particular device class, no entry will be recorded in conf.h.

A device definition has the form

NAME is class [on typ] [-op function]∗ [addr= value]∗

where NAME is a unique name corresponding to this device (or the name ‘GEN-
ERIC’), class is a device class name defined in the first section of the configuration
file, and on typ is a declared device type corresponding to the class. If there is only
one type in a class the on typ may be omitted, otherwise it must be present. If -op
and/or addr= fields are present, their values override those given in the device class
and type declaration; otherwise the defaults are used.

CONFIG (1) Xinu Programmer’s Manual CONFIG (1)

-- --

442 PC-Xinu Programmer’s Manual App. 2

Config uses each device definition to create an entry in devtab with each of the
devtab fields filled in with the defaults or values given in the device definition line.
Minor device numbers are computed consecutively among devices in each device
class, starting with minor device number zero. The number of minor devices is the
same as the number in the Nclass definition given above. The NAME field in a dev-
ice definition is used to generate a line of the form

#define NAME dvnum

in the file conf.h, where dvnum is the device number corresponding to the device. If
the NAME field is given as GENERIC, then no such line is generated in conf.h; this
is most commonly used when defining a number of identical devices belonging to
the same device class and type.

C preprocessor statements such as

#include <dos.h>

may appear in the device definition section prior to the definitions themselves; these
lines are added by config to the top of the file conf.c and are used, for example, in
defining manifest constants used in the address fields of devices.

The configuration constants section is appended by config to the end of the file
conf.h and is used principally to define configuration parameters such as the number
of processes and semaphores and the version number printed at startup. Typically
this section will contain information as illustrated in the following example:

/∗ Configuration and Size Constants ∗/
#define MEMMARK
#define NPROC 30
#define NSEM 100

#define RTCLOCK

#define VERSION "6pc (1-Dec-87)"

FILES
config/pcxconf, src/conf.h, src/conf.c

SEE ALSO
Intro(2)

CONFIG (1) Xinu Programmer’s Manual CONFIG (1)

-- --

Sec. 2 System Calls 443

Section 2: System Calls

The PC-Xinu operating system kernel consists of a set of run-time procedures to
implement operating system services on an 8088 microcomputer system. The sys-
tem supports multiple processes, I/O, synchronization based on counting sema-
phores, and preemptive scheduling. Each page in this section describes a system
routine that can be called by a user process.

Each page describes one system call, giving the number and types of arguments that
must be passed to the procedure under the heading "SYNOPSIS" (by giving their
declaration in C syntax). The heading "SEE ALSO" suggests the names of other
system calls that may be related to the described function. For example, the "SEE
ALSO" entry for system call wait suggests that the programmer may want to look at
the page for signal because both routines operate on semaphores.

In general, PC-Xinu blocks processes when requested services are not available.
Unless that manual page suggests otherwise, the programmer should assume that the
process requesting system services may be delayed until the request can be satisfied.
For example, calling read may cause an arbitrary delay until data can be obtained
from the device.

INTRO(2) PC-Xinu Programmer’s Manual INTRO(2)

-- --

444 PC-Xinu Programmer’s Manual App. 2

NAME
chprio − change the priority of a process

SYNOPSIS
int chprio(pid,newprio)
int pid;
int newprio;

DESCRIPTION
Chprio changes the scheduling priority of process pid to newprio. Priorities are posi-
tive integers. At any instant, the highest priority process that is ready will be run-
ning. A set of processes with equal priority is scheduled round-robin.

If the new priority is invalid, or the process id is invalid, chprio returns SYSERR.
Otherwise, it returns the old process priority. It is forbidden to change the priority of
the null process, which always remains zero.

SEE ALSO
create(2), getprio(2), resume(2)

BUGS
Because chprio changes priorities without rearranging processes on the ready list, it
should only be used on waiting, sleeping, suspended, or current processes.

CHPRIO (2) Xinu Programmer’s Manual CHPRIO (2)

-- --

Section 2 System Calls 445

NAME
close − device independent close routine

SYNOPSIS
int close(dev)
int dev;

DESCRIPTION
Close will disconnect I/O from the device given by dev. It returns SYSERR if dev is
incorrect, or is not opened for I/O. Otherwise, close returns OK.

Some tty devices like the console do not have to be opened and closed.

SEE ALSO
control(2), getc(2), open(2), putc(2), read(2), seek(2), write(2)

CLOSE (2) Xinu Programmer’s Manual CLOSE (2)

-- --

446 PC-Xinu Programmer’s Manual App. 2

NAME
control − device independent control routine

SYNOPSIS
int control(dev, function, arg1, arg2)
int dev;
int function;
int arg1, arg2;

DESCRIPTION
Control is the mechanism used to send control information to devices and device
drivers, or to interrogate their status. (Data normally flows through getc(2), putc(2),
read(2), and write(2).)

Control returns SYSERR if dev is incorrect or if the function cannot be performed.
The values returned otherwise are device dependent. For example, there is a control
function for "tty" devices that returns the number of characters waiting in the input
queue.

SEE ALSO
close(2), getc(2), open(2), putc(2), read(2), seek(2), write(2)

CONTROL (2) Xinu Programmer’s Manual CONTROL (2)

-- --

Section 2 System Calls 447

NAME
create − create a new process

SYNOPSIS
int create(caddr,ssize,prio,name,nargs[,argument]∗∗)
char ∗∗caddr;
int ssize;
int prio;
char ∗∗name;
int nargs;
int argument; /∗∗ actually, type machine word ∗∗/

DESCRIPTION
Create creates a new process that will begin execution at location caddr, with a stack
of ssize words, initial priority prio, and identifying name name. Caddr should be the
address of a procedure or main program, If the creation is successful, the (nonnega-
tive) process id of the new process is returned to the caller. The created process is
left in the suspended state; it will not begin execution until started by a resume com-
mand. If the arguments are incorrect, or if there are no free process slots, the value
SYSERR is returned. The new process has its own stack, but shares global data with
other processes according to the scope rules of C. If the procedure attempts to
return, its process will be terminated (see KILL(2)).

The process whose procedure name is xmain is created when PC-Xinu is initialized.

The caller can pass a variable number of arguments to the created process which are
accessed through formal parameters. The integer nargs specifies how many argu-
ment values follow. Nargs values from the arguments list will be passed to the
created process. The type and number of such arguments is not checked; each is
treated as a single machine word. The user is cautioned against passing the address
of any dynamically allocated datum to a process, because such objects may be deal-
located from the creator’s run-time stack even though the created process retains a
pointer.

SEE ALSO
kill(2)

CREATE (2) Xinu Programmer’s Manual CREATE (2)

-- --

448 PC-Xinu Programmer’s Manual App. 2

NAME
getc − device independent character input routine

SYNOPSIS
int getc(dev)
int dev;

DESCRIPTION
Getc will read the next character from the I/O device given by dev. It returns
SYSERR if dev is incorrect. It returns the character read (widened to an integer) if
successful.

SEE ALSO
close(2), control(2), open(2), putc(2), read(2), seek(2), write(2)

GETC (2) Xinu Programmer’s Manual GETC (2)

-- --

Section 2 System Calls 449

NAME
getdev − retrieve device number by device name

SYNOPSIS
int getdev(name)
char ∗∗name;

DESCRIPTION
Getdev will retrieve the number of a device given its device name. The device name
is a string of length less than 10 which appears as the dvnam field in each devtab
entry. Device numbers range from 0 to NDEVS-1. A common use of getdev is in
open calls where the device is known only by its string name, as in

open(getdev("ds0"),"demo","r");

Getdev will return SYSERR if the name cannot be found or if the name string is
empty.

Note that GENERIC devices cannot be retrieved by name.

SEE ALSO
control(2), getc(2), open(2), putc(2), read(2), seek(2), write(2)

GETDEV (2) Xinu Programmer’s Manual GETDEV (2)

-- --

450 PC-Xinu Programmer’s Manual App. 2

NAME
getmem,getstk − get a block of main memory

SYNOPSIS
char ∗∗getmem(nbytes)
int nbytes;

char ∗∗getstk(nbytes)
int nbytes;

DESCRIPTION
Getmem and getstk are synonymous. Getmem rounds the number of bytes, nbytes, to
an even-word multiple, and allocates a block of nbytes bytes of memory for the
caller. Getmem returns the lowest word address in the allocated block. If less than
nbytes bytes are available prior to the call, getmem returns SYSERR.

SEE ALSO
freemem(2), buffer(3)

BUGS
There is no way to protect memory, so any process may write into regions returned
by getmem.

GETMEM (2) Xinu Programmer’s Manual GETMEM (2)

-- --

Section 2 System Calls 451

NAME
getpid − return the process id of the currently running process

SYNOPSIS
int getpid()

DESCRIPTION
Getpid returns the process id of the currently executing process. It is necessary to be
able to identify one’s self in order to perform some operations (e.g., change one’s
scheduling priority).

GETPID (2) Xinu Programmer’s Manual GETPID (2)

-- --

452 PC-Xinu Programmer’s Manual App. 2

NAME
getprio − return the scheduling priority of a given process

SYNOPSIS
int getprio(pid)
int pid;

DESCRIPTION
Getprio returns the scheduling priority of process pid. If pid is invalid, getprio
returns SYSERR.

GETPRIO (2) Xinu Programmer’s Manual GETPRIO (2)

-- --

Section 2 System Calls 453

NAME
init − device independent initialization routine

SYNOPSIS
int init(dev)
int dev;

DESCRIPTION
The operating system calls init once at system startup for every device configured
into the device switch table. Argument dev gives the device descriptor of device to
be initialized. Init returns SYSERR if dev is incorrect. Otherwise, it returns the
value returned by the underlying device initialization routine.

Normally, user processes do not invoke init directly. However, because the exact
semantics of device manipulation depend on underlying device-dependent routines,
it may be possible or even necessary to do so for special devices.

SEE ALSO
close(2), control(2), getc(2), open(2), putc(2), seek(2), write(2)

INIT (2) Xinu Programmer’s Manual INIT (2)

-- --

454 PC-Xinu Programmer’s Manual App. 2

NAME
kill − terminate a process

SYNOPSIS
int kill(pid)
int pid;

DESCRIPTION
Kill will stop process pid and remove it from the system, returning SYSERR if the
process id is invalid, OK otherwise. Kill terminates a process immediately. If the
process has been queued on a semaphore, it is removed from the queue and the
semaphore count is incremented as if the process had never been there. Processes
waiting to send a message to a full port disappear without affecting the port. If the
process is waiting for I/O, the I/O is stopped (if possible).

One can kill a process in any state, including a suspended one. Once killed, a pro-
cess cannot recover.

BUGS
At present there is no way to recover space allocated dynamically when a process
terminates. However, kill does recover the stack space allocated to a process when it
is created.

KILL (2) Xinu Programmer’s Manual KILL (2)

-- --

Section 2 System Calls 455

NAME
mark, unmarked − set and check initialization marks efficiently

SYNOPSIS
#include <mark.h>

int mark(mk)
MARKER mk;

int unmarked(mk)
MARKER mk;

DESCRIPTION
Mark sets mk to ‘‘initialized,’’ and records its location in the system. It returns 0 if
the location is already marked, OK if the marking was successful, and SYSERR if
there are too many marked locations.

Unmarked checks the contents and location of mk to see if it has been previously
marked with the mark procedure. It returns OK if and only if mk has not been
marked, 0 otherwise. The key is that marking works correctly after a reboot, no
matter what was left in the marked locations when the system stopped.

Both mark and unmarked operate efficiently (in a few instructions) to determine
whether a location has been marked. They are most useful for creating self-
initializing procedures when the system will be restarted. Both the value in mk as
well as its location are used to tell if it has been marked.

Memory marking can be eliminated from PC-Xinu by removing the definition of the
symbol MEMMARK from the configuration file pcxconf. Self-initializing library
routines may require manual initialization if MEMMARK is disabled (e.g., see
BUFFER(3)).

BUGS
Mark does not verify that the location given lies in the static data area before mark-
ing it; to avoid having the system retain marks for locations on the stack after pro-
cedure exit, do not mark automatic variables.

MARK (2) Xinu Programmer’s Manual MARK (2)

-- --

456 PC-Xinu Programmer’s Manual App. 2

NAME
open − device independent open routine

SYNOPSIS
open(dev)
int dev;

open(dev,name,mode)
int dev;
char ∗∗name;
char ∗∗mode;

open(dev,border,attr)
int dev;
char ∗∗border;
char ∗∗attr;

DESCRIPTION
Open will establish connection with the device given by dev. It returns SYSERR if
dev is incorrect or if the specified device cannot be opened. Otherwise it returns the
device number in devtab of the opened device.

The second form of open is used to open a disk file on a master device dev with
filename name. The open mode is given in the string mode which can contain a com-
bination of the characters rwon. Using ‘r’ will open the file for read access, while
‘w’ will open it for write access. The default is to open for both read and write
access. Using ‘o’ (old) specifies that the file must already exist; in this case, open
will return SYSERR if the file does not exist. Similarly, ‘n’ (new) specifies that the
file must not exist, and open will return SYSERR if the file exists, otherwise it will
create the file. It is an error to use both ‘o’ and ‘n’. In the absence of either ‘o’ or
‘n’, open will create the file if it does not exist. If successful, open returns the device
number of the device in devtab corresponding to the open file.

The third form of open will create a window on the master device dev with the given
border and attribute strings. If successful, open returns the device number of the
device in devtab corresponding to the open window.

The border string has the form "#c1,r1:c2,r2" where c1,r1 are the decimal coordi-
nates (in column,row order) of the top left corner of the window, and c2,r2 are the
coordinates of the bottom right corner. If the ‘#’ character is omitted at the begin-
ning of the border string, the window will be created without a border. The attr
string has the form "fff/bbb". The ‘fff’ and ‘bbb’ strings are three-character color
codes representing the foreground and background colors to be used with a color
display. The color codes and corresponding colors are:

OPEN (2) Xinu Programmer’s Manual OPEN (2)

-- --

Section 2 System Calls 457

blk = black
blu = blue
grn = green
cyn = cyan
red = red
mag = magenta
yel = yellow
wht = white

The ‘fff’ or ‘bbb’ fields may be replaced by a single decimal digit in the range 0 to 7,
which specifies the numeric code for the foreground or background color, respec-
tively. For monochrome displays, the numeric code represents levels of gray with 0
for black and 7 for white. If either or both of the ‘fff’ or ‘bbb’ fields are missing, the
appropriate defaults are taken. (If the ‘bbb’ field is missing, the ‘/’ may be omitted.)

The window color codes may be preceded by an optional blink specifier in the attr
string; a ‘?’ blink specifier indicates that the foreground blinks, while a ‘∗’ specifies
that it does not. Similarly, an optional intensity specifier may be given in the attr
string; a ‘+’ specifies that the foreground is intensified, while a ‘-’ specifies that it is
not.

The default window attributes are "∗-wht/blk" or, equvalently, "∗-7/0".

SEE ALSO
close(2), control(2), getc(2), putc(2), read(2), seek(2), write(2)

OPEN (2) Xinu Programmer’s Manual OPEN (2)

-- --

458 PC-Xinu Programmer’s Manual App. 2

NAME
panic − abort processing due to severe error

SYNOPSIS
int panic(message)
char ∗∗message;

DESCRIPTION
Panic will print the character string message on the console, dump the machine
registers and top few stack locations, and terminate PC-Xinu. It uses kprintf rather
than printf, so it may be called anywhere in the kernel (e.g., from an interrupt routine
that may be executed by the null process).

There are alternate entry points to panic that are invoked by divide by zero, illegal
interrupts, or processor exceptions.

SEE ALSO
kprintf(3), printf(3)

PANIC (2) Xinu Programmer’s Manual PANIC (2)

-- --

Section 2 System Calls 459

NAME
pcount − return the number of messages currently waiting at a port

SYNOPSIS
int pcount(portid)
int portid;

DESCRIPTION
Pcount returns the message count associated with port portid.

A positive count p means that there are p messages available for processing. This
count includes counts of messages explicitly in the port, the number of processes
which are attempting to send a message to the port, and the number of processes
which are attempting to send messages to the port but are blocked (because the
queue is full). A negative count p means that there are p processes awaiting mes-
sages from the port. A zero count means that there are neither messages waiting nor
processes waiting to consume messages.

SEE ALSO
pcreate(2), pdelete(2), preceive(2), preset(2), psend(2)

BUGS
In this version of PC-Xinu, SYSERR has the value -1 which corresponds to a legal
port count.

PCOUNT (2) Xinu Programmer’s Manual PCOUNT (2)

-- --

460 PC-Xinu Programmer’s Manual App. 2

NAME
pcreate − create a new port

SYNOPSIS
int pcreate(count)
int count;

DESCRIPTION
Pcreate creates a port with count locations for storing message pointers.

Pcreate returns an integer identifying the port if successful. If no more ports can be
allocated, or if count is nonpositive, pcreate returns SYSERR.

Ports are manipulated with PSEND(2) and PRECEIVE(2). Receiving from a port
returns a message that was previously sent to the port.

SEE ALSO
pcount(2), pdelete(2), preceive(2), preset(2), psend(2)

PCREATE (2) Xinu Programmer’s Manual PCREATE (2)

-- --

Section 2 System Calls 461

NAME
pdelete − delete a port

SYNOPSIS
int pdelete(portid, dispose) int portid; int (∗∗dispose)();

DESCRIPTION
Pdelete deallocates port portid. The call returns SYSERR if portid is illegal or is not
currently allocated.

The command has several effects, depending on the state of the port at the time the
call is issued. If processes are waiting for messages from portid, they are made
ready and return SYSERR to their caller. If messages exist in the port, they are
disposed of by procedure dispose . If processes are waiting to place messages in the
port, they are made ready and given SYSERR indications (just as if the port never
existed). Pdelete performs the same function of clearing messages and processes
from a port as preset(2) except that pdelete also deallocates the port.

SEE ALSO
pcount(2), pcreate(2), preceive(2), preset(2), psend(2)

PDELETE (2) Xinu Programmer’s Manual PDELETE (2)

-- --

462 PC-Xinu Programmer’s Manual App. 2

NAME
preceive − get a message from a port

SYNOPSIS
preceive(portid)
int portid;

DESCRIPTION
Preceive retrieves the next message from the port portid, returning the message if
successful, or SYSERR if portid is invalid. (The sender and receiver must agree on
a convention for the meaning of the message.)

The calling process is blocked if there are no messages available (and reawakened as
soon as a message arrives). The only ways to be released from a port queue are for
some other process to send a message to the port with psend(2) or for some other
process to delete or reset the port with pdelete(2) or preset(2).

SEE ALSO
pcount(2), pcreate(2), pdelete(2), preset(2), psend(2)

PRECEIVE (2) Xinu Programmer’s Manual PRECEIVE (2)

-- --

Section 2 System Calls 463

NAME
preset − reset a port

SYNOPSIS
int preset(portid, dispose)
int portid;
int (∗∗dispose)();

DESCRIPTION
Preset flushes all messages from a port and releases all processes waiting to send or
receive messages. Preset returns SYSERR if portid is not a valid port id.

Preset has several effects, depending on the state of the port at the time the call is
issued. If processes are blocked waiting to receive messages from port portid, they
are all made ready; each returns SYSERR to caller. If messages are in the port, they
are disposed of by passing them to function dispose . If process are blocked waiting
to send messages they are made ready; each returns SYSERR to its caller (as though
the port never existed).

The effects of preset are the same as pdelete, followed by pcreate, except that the
port is not deallocated. The maximum message count remains the same as it was.

BUGS
There is no way to change the maximum message count when the port is reset.

SEE ALSO
pcount(2), pcreate(2), pdelete(2), preceive(2), psend(2)

PRESET (2) Xinu Programmer’s Manual PRESET (2)

-- --

464 PC-Xinu Programmer’s Manual App. 2

NAME
psend − send a message to a port

SYNOPSIS
int psend(portid, message)
int portid;
int message;

DESCRIPTION
Psend adds the integer message to the port portid. If successful, psend returns OK; it
returns SYSERR if portid is invalid. Note that psend may return to the caller before
the receiver has consumed the message.

If the port is full at the time of the call, the sending process will be blocked until
space is available in the port for the message.

SEE ALSO
pcount(2), pcreate(2), pdelete(2), preceive(2), preset(2)

PSEND (2) Xinu Programmer’s Manual PSEND (2)

-- --

Section 2 System Calls 465

NAME
putc − device independent character output routine

SYNOPSIS
int putc(dev, ch)
int dev;
char ch;

DESCRIPTION
Putc will write the character ch on the I/O device given by dev. It returns SYSERR if
dev is incorrect, OK otherwise.

By convention, printf calls putc on device CONSOLE to write formatted output.
Usually CONSOLE is device number zero.

SEE ALSO
close(2), control(2), getc(2), open(2), read(2), seek(2), write(2)

PUTC (2) Xinu Programmer’s Manual PUTC (2)

-- --

466 PC-Xinu Programmer’s Manual App. 2

NAME
read − device independent input routine

SYNOPSIS
int read(dev, buffer, numchars)
int dev;
char ∗∗buffer;
int numchars;

DESCRIPTION
Read will read up to numchars bytes from the I/O device given by dev. It returns
SYSERR if dev is incorrect, and returns the number of characters read if successful.
The number of bytes actually returned depends on the device. For example, when
reading from a device of type "tty", each read normally returns one line.

SEE ALSO
close(2), control(2), getc(2), open(2), putc(2), seek(2), write(2)

READ (2) Xinu Programmer’s Manual READ (2)

-- --

Section 2 System Calls 467

NAME
receive − receive a (one-word) message

SYNOPSIS
int receive()

DESCRIPTION
Receive returns the one-word message sent to a process using SEND(2). If no mes-
sages are waiting, receive blocks until one appears.

SEE ALSO
preceive(2), psend(2), receive(2)

RECEIVE (2) Xinu Programmer’s Manual RECEIVE (2)

-- --

468 PC-Xinu Programmer’s Manual App. 2

NAME
resume − resume a suspended process

SYNOPSIS
int resume(pid)
int pid;

DESCRIPTION
Resume takes process pid out of hibernation and allows it to resume execution. If
pid is invalid or process pid is not suspended, resume returns SYSERR; otherwise it
returns the priority at which the process resumed execution. Only suspended
processes may be resumed.

SEE ALSO
sleep(2), suspend(2), send(2), receive(2)

RESUME (2) Xinu Programmer’s Manual RESUME (2)

-- --

Section 2 System Calls 469

NAME
scount − return the count associated with a semaphore

SYNOPSIS
int scount(sem)
int sem;

DESCRIPTION
Scount returns the current count associated with semaphore sem. A count of negative
p means that there are p processes waiting on the semaphore; a count of positive p
means that at most p more calls to wait() can occur before a process will be blocked
(assuming no intervening sends occur).

SEE ALSO
screate(2), sdelete(2), signal(2), sreset(2), wait(2)

BUGS
In this version of PC-Xinu, SYSERR has the value -1 which corresponds to a legal
semaphore count.

SCOUNT (2) Xinu Programmer’s Manual SCOUNT (2)

-- --

470 PC-Xinu Programmer’s Manual App. 2

NAME
screate − create a new semaphore

SYNOPSIS
int screate(count)
int count;

DESCRIPTION
Screate creates a counting semaphore and initializes it to count. Screate returns the
integer identifier of the semaphore if successful, SYSERR if no more semaphores
can be allocated.

Semaphores are manipulated with WAIT(2) and SIGNAL(2) to synchronize
processes. Waiting causes the semaphore count to be decremented; decrementing a
semaphore count past zero causes a process to be blocked. Signaling a semaphore
increases its count, freeing a blocked process if one is waiting.

SEE ALSO
scount(2), sdelete(2), signal(2), sreset(2), wait(2)

SCREATE (2) Xinu Programmer’s Manual SCREATE (2)

-- --

Section 2 System Calls 471

NAME
sdelete − delete a semaphore

SYNOPSIS
int sdelete(sem)
int sem;

DESCRIPTION
Sdelete removes semaphore sem from the system and returns processes that were
waiting for it to the ready state. The call returns SYSERR if sem is not a legal sema-
phore; it returns OK if the deletion was successful.

SEE ALSO
scount(2), screate(2), signal(2), sreset(2), wait(2)

SDELETE (2) Xinu Programmer’s Manual SDELETE (2)

-- --

472 PC-Xinu Programmer’s Manual App. 2

NAME
seek − device independent position seeking routine

SYNOPSIS
int seek(dev, position)
int dev;
long position;

DESCRIPTION
Seek will position the device given by dev after the position character. It returns
SYSERR if dev is incorrect, or if it is not possible to position dev as specified.

Seek cannot be used with devices connected to terminals.

Note that the position argument is declared long rather than int.

SEE ALSO
close(2), control(2), getc(2), open(2), putc(2), read(2), write(2)

SEEK (2) Xinu Programmer’s Manual SEEK (2)

-- --

Section 2 System Calls 473

NAME
send,sendf,sendn − send a (one-word) message to a process

SYNOPSIS
int send(pid, msg)
int pid;
int msg;

int sendf(pid, msg)
int pid;
int msg;

int sendn(pid, msg)
int pid;
int msg;

DESCRIPTION
In any of the three forms, send sends the one-word message msg to the process with
id pid. A process may have at most one outstanding message that has not been
received.

The form send returns SYSERR if pid is invalid, or if the process already has a mes-
sage waiting that has not been received. Otherwise, it sends the message and returns
OK. Processes are rescheduled following a send.

The form sendf differs from send only in that it forces the message msg to be sent to
the process, even if it means destroying an existing message that has not been
received.

The form sendn differs from send only in that it does not force a reschedule after the
message has been sent.

SEE ALSO
preceive(2), psend(2), receive(2)

SEND (2) Xinu Programmer’s Manual SEND (2)

-- --

474 PC-Xinu Programmer’s Manual App. 2

NAME
signal,signaln − signal a semaphore

SYNOPSIS
int signal(sem)
int signaln(sem,count)
int sem;
int count;

DESCRIPTION
In either form, signal signals semaphore sem and returns SYSERR if the semaphore
does not exist, OK otherwise. The form signal increments the count of sem by 1 and
frees the next process if any are waiting. The form signaln increments the sema-
phore by count and frees up to count processes if that many are waiting. Note that
signaln(sem,x) is equivalent to executing signal(sem) x times.

SEE ALSO
scount(2), screate(2), sdelete(2), sreset(2), wait(2)

SIGNAL (2) Xinu Programmer’s Manual SIGNAL (2)

-- --

Section 2 System Calls 475

NAME
sleep,sleept − go to sleep for a specified time

SYNOPSIS
int sleep(secs)
int sleept(ticks)
int secs;
int ticks;

DESCRIPTION
In either form, sleep causes the current process to delay for a specified time and then
resume. The form sleep expects the delay to be given in an integral number of
seconds; it is most useful for longer delays. The resolution of the real-time clock
used with PC-Xinu results in sleep calls to be in error by as much as 7 percent.

The form sleept expects the delay to be given in an integral number of ticks; it is
most useful for short delays. Ticks occur at the rate of about 18.2 per second.

Both forms return SYSERR if the argument is negative or if the line time clock is not
enabled on the processor. Otherwise they delay for the specified time and return
OK.

Sleeping is not the same as hibernation (see SUSPEND(2)). In particular, sleeping
processes cannot be awakened until they time out.

SEE ALSO
suspend(2)

BUGS
The maximum sleep is 32767 seconds (about 546 minutes, or 9.1 hours). Sleep
guarantees a lower bound on delay, but since the system may delay processing of
interrupts at times, sleep cannot guarantee an upper bound.

SLEEP (2) Xinu Programmer’s Manual SLEEP (2)

-- --

476 PC-Xinu Programmer’s Manual App. 2

NAME
sreset − reset semaphore count

SYNOPSIS
int sreset(sem,count)
int sem;
int count;

DESCRIPTION
Sreset frees processes in the queue for semaphore sem, and resets its count to count.
This corresponds to the operations of sdelete(sem) and sem=screate(count), except
that it guarantees that the semaphore id sem does not change. Sreset returns
SYSERR if sem is not a valid semaphore id. The current count in a semaphore does
not affect resetting it.

SEE ALSO
scount(2), screate(2), sdelete(2), signal(2), wait(2)

SRESET (2) Xinu Programmer’s Manual SRESET (2)

-- --

Section 2 System Calls 477

NAME
suspend − suspend a process to keep it from executing

SYNOPSIS
int suspend(pid)
int pid;

DESCRIPTION
Suspend places process pid in a state of hibernation. If pid is illegal, or the process is
not currently running and it is not on the ready list, suspend returns SYSERR. Oth-
erwise suspend returns the priority of the suspended process. A process may
suspend itself, in which case the call returns the priority at which the process is
resumed. A process can put another into hibernation; a process can only put itself to
sleep.

SEE ALSO
resume(2), sleep(2), send(2), receive(2)

SUSPEND (2) Xinu Programmer’s Manual SUSPEND (2)

-- --

478 PC-Xinu Programmer’s Manual App. 2

NAME
wait − block and wait until semaphore signalled

SYNOPSIS
int wait(sem)
int sem;

DESCRIPTION
Wait decrements the count of semaphore sem, blocking the calling process if the
count goes negative by enqueuing it in the queue for sem. The only ways to get free
from a semaphore queue are for some other process to signal the semaphore, or for
some other process to delete or reset the semaphore. Wait and signal are the two
basic synchronization primitives in the system.

Wait returns SYSERR if sem is invalid. Otherwise, it returns OK once freed from
the queue.

SEE ALSO
scount(2), screate(2), sdelete(2), signal(2), sreset(2)

WAIT (2) Xinu Programmer’s Manual WAIT (2)

-- --

Section 2 System Calls 479

NAME
write − write a sequence of characters from a buffer

SYNOPSIS
int write(dev, buff, count)
int dev;
char ∗∗buff;
int count;

DESCRIPTION
Write writes count characters to the I/O device given by dev, from sequential loca-
tions of the buffer, buff. Write returns SYSERR if dev or count is invalid, and the
number of characters written for a successful write. Write normally returns when it
is safe for the user to change the contents of the buffer. For some devices this means
write will wait for I/O to complete before returning. On other devices, the data is
copied into a kernel buffer and write returns while data is being transferred.

SEE ALSO
close(2), control(2), getc(2), open(2), putc(2), read(2), seek(2)

BUGS
Write may not have exclusive use of the I/O device, so output from other processes
may be mixed in.

WRITE (2) Xinu Programmer’s Manual WRITE (2)

-- --

480 PC-Xinu Programmer’s Manual App. 2

Section 3: Library Procedures

This section of the manual describes the procedures (functions) available to PC-Xinu
processes from the PC-Xinu library. Additional library functions (such as string
operations) are available from the C compiler run-time library; they are not docu-
mented here. Warning: most standard C run-time library functions will not work in
PC-Xinu.

INTRO(3) PC-Xinu Programmer’s Manual INTRO(3)

-- --

Section 3 Library Procedures 481

NAME
freebuf, getbuf, mkpool, poolinit − buffer pool routines

SYNOPSIS
int freebuf(buf);
char ∗∗buf;

char ∗∗getbuf(poolid);
int poolid;

int mkpool(bufsiz, numbufs)
int bufsiz, numbufs;

int poolinit()

DESCRIPTION
The routine poolinit initializes the entire buffer pool manager. It may be ignored as
long as the MEMMARK option has been included in the PC-Xinu Configuration file
pcxconf. Without MEMMARK, poolinit must be called once, before any other buffer
manipulation routines.

Mkpool creates a pool of numbufs buffers, each of size bufsiz, and returns an integer
identifying the pool. If no more pools can be created, or if the arguments are
incorrect, mkpool returns SYSERR.

Once a pool has been created, getbuf obtains a free buffer from the pool given by
poolid, and returns a pointer to the first word of the buffer. If all buffers in the speci-
fied pool are in use, the calling process will be blocked until a buffer becomes avail-
able. If the argument poolid does not specify a valid pool, getbuf returns SYSERR.

Freebuf returns a buffer to the pool from which it was allocated. Freebuf returns OK
for normal completion, SYSERR if buf does not point to a valid buffer from a buffer
pool.

BUGS
At present there is no way to reclaim space from buffer pools once they are no
longer needed.

BUFFER (3) Xinu Programmer’s Manual BUFFER (3)

-- --

482 PC-Xinu Programmer’s Manual App. 2

NAME
fgetc, getchar, kgetc, − get character from a device

SYNOPSIS
#include <io.h>

int fgetc(dev)
int dev;

int getchar()

int kgetc()

DESCRIPTION
Fgetc returns the next character from the named input device .

Getchar() is identical to getc(CONSOLE) .

Kgetc() is similar to getchar() , except that kgetc performs direct BIOS calls and can
be used for system-level debugging.

Note that fgetc is exactly equivalent to getc.

SEE ALSO
getc(2), putc(2), gets(3), scanf(3),

DIAGNOSTICS
These functions return the integer constant SYSERR upon read error.

FGETC (3) Xinu Programmer’s Manual FGETC (3)

-- --

Section 3 Library Procedures 483

NAME
fputc, putchar, kputc − put character to a device

SYNOPSIS
#include <io.h>

int fputc(dev, c)
int dev;
char c;

putchar(c)
kputc(c)
char c;

DESCRIPTION
Fputc appends the character c to the named output device , and returns SYSERR if
device is invalid; it is defined to be putc(2).

Putchar(c) is defined as putc(CONSOLE, c). kputc(c) is the same as putchar(c) ,
except that kputc performs direct BIOS calls and may be used for system-level
debugging.

SEE ALSO
getc(3), puts(3), printf(3)

FPUTC (3) Xinu Programmer’s Manual FPUTC (3)

-- --

484 PC-Xinu Programmer’s Manual App. 2

NAME
printf, fprintf, kprintf − formatted output conversion

SYNOPSIS
printf(format [, arg] ...)
char ∗∗format;

fprintf(dev, format [, arg] ...)
int dev;
char ∗∗format;

kprintf(format [, arg] ...)
char ∗∗format;

DESCRIPTION
Printf writes formatted output on device CONSOLE . Fprintf writes formatted output
on the named output device . Kprintf writes formatted output to the console device
using direct BIOS calls.

Each of these functions converts, formats, and prints its arguments after the format
under control of the format argument. The format argument is a character string
which contains two types of objects: plain characters, which are simply copied to
the output stream, and conversion specifications, each of which causes conversion
and printing of the next successive arg printf .

Each conversion specification is introduced by the character %. Following the %,
there may be, in the following order,

− an optional minus sign ‘−’ which specifies left adjustment of the converted
value in the indicated field;

− an optional digit string specifying a field width; if the converted value has
fewer characters than the field width it will be blank-padded on the left (or
right, if the left-adjustment indicator has been given) to make up the field
width; if the field width begins with a zero, zero-padding will be done
instead of blank-padding;

− an optional period ‘.’ which serves to separate the field width from the next
digit string;

− an optional digit string specifying a precision which specifies the maximum
number of characters to be printed from a string;

− the character l specifying that a following d, o, x, or u corresponds to a long
integer arg. (A capitalized conversion code accomplishes the same thing.)

− a character which indicates the type of conversion to be applied.

PRINTF (3) Xinu Programmer’s Manual PRINTF (3)

-- --

Section 3 Library Procedures 485

A field width or precision may be ‘∗’ instead of a digit string. In this case an integer
arg supplies the field width or precision.

The conversion characters and their meanings are

dox The integer arg is converted to decimal, octal, or hexadecimal notation
respectively.

c The character arg is printed. Null characters are ignored.

s Arg is taken to be a string (character pointer), and characters from the string
are printed until a null character or until the number of characters indicated
by the precision specification is reached; however, if the precision is 0 or
missing all characters up to a null are printed.

u The unsigned integer arg is converted to decimal and printed (the result will
be in the range 0 through 65535 on the PC for normal integers and 0 through
4294967295 for long integers).

% Print a ‘%’; no argument is converted.

In no case does a non-existent or small field width cause truncation of a field; pad-
ding takes place only if the specified field width exceeds the actual width. Charac-
ters generated by printf are printed by putc(2).

Examples
To print a date and time in the form ‘Sunday, July 3, 10:02’, where weekday and
month are pointers to null-terminated strings:

printf("%s, %s %d, %02d:%02d", weekday, month, day, hour, min);

SEE ALSO
putc(2), kputc(3)

BUGS
Very wide fields (>128 characters) fail.

PRINTF (3) Xinu Programmer’s Manual PRINTF (3)

