
7

Message Passing

Message passing refers to a form of inter-process communication in which one pro-
cess requests that the operating system send data directly to another. In some systems,
processes deposit and retrieve messages from named ‘‘pickup points’’; in others, each
message must be addressed directly to a process. Message passing is both convenient
and powerful, and many systems use it as the basis for all communication. For example,
operations like sending data to a terminal or across a network to another machine can all
be designed on top of message passing primitives.

Messages also provide a form of process coordination because the receiver can de-
lay until the arrival of the next message. The chief difference between coordinating with
messages and semaphores is that semaphores require precise synchronization between
the processes that wait and those that signal, because there must be a call of wait(s) for
every call to signal(s). By contrast, message passing can be unsynchronized. Unsyn-
chronized messages are easier to use if a process does not know how many messages it
will receive, when they will be sent, or which processes will send them. For example, a
process driving the video display uses messages sent from other processes to inform it
when there are characters available to display.

7.1 Message Passing In PC-Xinu

PC-Xinu supports two forms of message passing that serve to demonstrate two
design approaches. This chapter deals with the first form, messages passed from one
process directly to another. Chapter 15 discusses the second form, messages left at ren-
dezvous points. Separating messages into two classes has the advantage of making
process-to-process messages more efficient, but it has the disadvantage of requiring the
user to know the destination of messages when writing programs. (Readers with special
interest in message passing facilities should think about the potential benefits and liabili-
ties of unifying all message passing as they read this material.)

113

-- --

114 Message Passing Chap. 7

Process-to-process message passing has been carefully designed to ensure that
processes do not block (i.e., delay) while sending messages, and waiting messages do not
consume all of memory. To make these guarantees, the message passing facility limits
each message to one word (the size of an integer or pointer) and permits only one unre-
ceived message per process at any time. The implementation of these restrictions is
well-defined: if several messages are sent to a process before it attempts to receive any
of them, only the first message will be received. Thus, a process can use message pass-
ing to determine which of several events completed first, by having them each send a
unique message upon completion.

Five PC-Xinu system calls manipulate messages: receive, recvclr, send, sendf and
sendn. Send takes a message and a process id as arguments and delivers the message to
the specified process. Receive waits for a message to arrive and then returns that mes-
sage to its caller; it requires no arguments. Recvclr is the asynchronous analog of re-
ceive; it never waits for a message to arrive. If the process has a message when it calls
recvclr, the call returns the message exactly like receive. But if no message is waiting,
recvclr returns the value OK to its caller without delaying to wait for a message to arrive.
As the name implies, recvclr is often used to clear away any old messages that might be
waiting. Sendf and sendn are similar to send; sendf forces delivery of the message even if
there are other messages pending (by destroying any existing messages), while sendn
behaves exactly like send but does not force a reschedule. Sendf is used to send an ur-
gent message which must not be ignored. Sendn is used in interrupt service routines
where a reschedule may not be appropriate.

Again, the question arises: ‘‘in what state should a process be while waiting for a
message?’’ Because waiting for a message differs from waiting for a semaphore, waiting
for the CPU, suspended animation, or currently executing, none of the existing states ex-
actly solves the problem. So, it is time to add another state to our design. The new state,
‘‘waiting to receive a message,’’ is referenced in the software with the symbolic constant
PRRECV. Adding it to the other states produces the transition diagram shown in Figure
7.1.

7.2 Implementation Of Send

Send must store messages where the recipient can receive them. They cannot be
kept in the sender’s memory because the sending process might exit before the message
was received. They cannot be kept in the recipient’s memory because allowing the
sender to write into it poses a security threat. We have solved the problem by allocating
space for messages in the process table entry.

-- --

Sec. 7.2 Implementation Of Send 115

READY CURRENT

resched

resched

SUSPENDED
suspendresume

suspend

create

WAITING
waitsignal

RECEIVING
receivesend

Figure 7.1 Process state transitions for the ’receiving’ state

To deposit a message, send first checks that the specified recipient process exists. It
verifies that the recipient does not have a message outstanding by examining the phasmsg
field of its process table entry. If the process has no outstanding messages, send deposits
the new message in the pmsg field and makes the phasmsg field nonzero to indicate that a
message is waiting. Finally, if the process is waiting the arrival of a message, send
moves it to the ready list, enabling it to access the message and continue execution.

-- --

116 Message Passing Chap. 7

/* send.c - send */

#include <conf.h>

#include <kernel.h>

#include <proc.h>

/*--

* send -- send a message to another process

*--

*/

SYSCALL send(pid, msg)

int pid;

int msg;

{
struct pentry *pptr; /* receiver’s proc. table addr. */

int ps;

disable(ps);

if (isbadpid(pid) | | ((pptr = &proctab[pid])->pstate == PRFREE)

| | pptr->phasmsg != 0) {
restore(ps);

return(SYSERR);

}
pptr->pmsg = msg; /* deposit message */

pptr->phasmsg++;

if (pptr->pstate == PRRECV) { /* if receiver waits, start it */

ready(pid);

resched();

}
restore(ps);

return(OK);

}

The implementations of sendf and sendn are straightforward modifications of send.

-- --

Sec. 7.2 Implementation Of Send 117

/* sendf.c - sendf */

#include <conf.h>

#include <kernel.h>

#include <proc.h>

/*--

* sendf -- sendf a message to another process, forcing delivery

*--

*/

SYSCALL sendf(pid, msg)

int pid;

int msg;

{
struct pentry *pptr;

int ps;

disable(ps);

if (isbadpid(pid)| | ((pptr= &proctab[pid])->pstate == PRFREE)) {
restore(ps);

return(SYSERR);

}
pptr->pmsg = msg;

pptr->phasmsg++;

if (pptr->pstate == PRRECV) {
ready(pid);

resched();

}
restore(ps);

return(OK);

}

-- --

118 Message Passing Chap. 7

/* sendn.c - sendn */

#include <conf.h>

#include <kernel.h>

#include <proc.h>

/*--

* sendn -- send a message to another process, but do not reschedule

*--

*/

SYSCALL sendn(pid, msg)

int pid;

int msg;

{
struct pentry *pptr; /* receiver’s proc. table addr. */

int ps;

disable(ps);

if (isbadpid(pid) | | ((pptr= &proctab[pid])->pstate == PRFREE)

| | pptr->phasmsg != 0) {
restore(ps);

return(SYSERR);

}
pptr->pmsg = msg; /* deposit message */

pptr->phasmsg++;

if (pptr->pstate == PRRECV) /* if receiver waits, start it */

ready(pid);

restore(ps);

return(OK);

}

7.3 Implementation Of Receive

A process, P, calls receive (or recvclr) to obtain a message that has been sent to it.
Receive examines the phasmsg field of its process table entry to determine if there is a
message waiting. If not, it changes P to the receiving state and calls resched, allowing
other processes to run. Eventually, when another process, Q, sends P a message, send
places P back on the ready list. When P executes, the call to resched returns, allowing
receive to pick up the message and return it to the caller.

-- --

Sec. 7.3 Implementation Of Receive 119

/* receive.c - receive */

#include <conf.h>

#include <kernel.h>

#include <proc.h>

/*--

* receive -- wait for a message and return it

*--

*/

SYSCALL receive()

{
struct pentry *pptr;

int msg;

int ps;

disable(ps);

pptr = &proctab[currpid];

if (pptr->phasmsg == 0) { /* if no message, wait for one */

pptr->pstate = PRRECV;

resched();

}
msg = pptr->pmsg; /* retrieve message */

pptr->phasmsg = 0;

restore(ps);

return(msg);

}

Recvclr operates much like receive except that it always returns immediately. The
implementation is straightforward:

-- --

120 Message Passing Chap. 7

/* recvclr.c - recvclr */

#include <conf.h>

#include <kernel.h>

#include <proc.h>

/*--

* recvclr -- clear messages, returning waiting message (if any)

*--

*/

SYSCALL recvclr()

{
int ps;

int msg;

disable(ps);

if (proctab[currpid].phasmsg) { /* existing message? */

proctab[currpid].phasmsg = 0;

msg = proctab[currpid].pmsg;

} else

msg = OK;

restore(ps);

return(msg);

}

7.4 Summary

Message passing allows one process to send information to another. This chapter
explored a simple form of interprocess message passing that used the central process
table as an exchange point. The chief advantages of such an implementation are small
size and efficient code; the chief disadvantage is the limitation to one outstanding mes-
sage per process. Later chapters will explore a generalization of message passing in
which processes rendezvous at common message exchange points called ports.

FOR FURTHER STUDY

Brinch Hansen [1970, 1972] introduced the notion of message passing and showed
how it can be used in the RC 4000 system. The text by Peterson and Silberschatz [1983]
surveys the area, discussing the advantages and disadvantages of allowing multiple mes-
sages to be enqueued for a receiver.

-- --

For Further Study 121

EXERCISES

7.1 Set up an environment to test the message-passing primitives described in this chapter. How
can you ensure that processes send messages in a particular order for test purposes?

7.2 Write a program that prints a prompt and then loops, printing the prompt again every 8
seconds until someone types a character. (Hint: sleep(8) delays the calling process for 8
seconds).

7.3 It is often best to try a new facility before installing it. Assume send and receive did not ex-
ist, and write experimental versions without using the PRRECV process state. (Hint: suspend
and resume almost suffice; make sure that the resumption came from send).

7.4 PC-Xinu records the first message sent to a process and rejects others. When is message ord-
er important?

7.5 Implement versions of send and receive that record all messages.

7.6 Discuss the use of a message passing scheme in which each process can have at most k out-
standing messages.

7.7 Discuss a message passing mechanism in which each process is allowed at most k outstand-
ing messages, with the added restriction that successive calls to send block (e.g., by waiting
on a semaphore) until the receiving process makes room for additional messages by receiving
some of those that are waiting.

7.8 Investigate systems in which the innermost layer implements message passing instead of con-
text switching. What is their chief liability?

7.9 What facility in PC-Xinu handles the case where a process wants to receive the most recent
message sent, instead of the first message sent?

