
20

System Configuration

This chapter concludes our discussion of operating system design by answering two
practical questions: how can the code built in earlier chapters be transformed to make it
suitable for a system with different peripheral devices, and how can the code be collected
into a so-called kernel that is isolated from user processes by the hardware’s system call
mechanism?

20.1 The Need For Multiple Configurations

When the system code is transformed to make it suitable for a particular set of peri-
pheral devices, we say it has been configured; the result is often referred to as a confi-
guration. The preceding chapters described the design process as if operating systems
were built for one particular machine with a specific set of I/O devices. In reality, of
course, a given operating system must run on a variety of hardware configurations, each
with its own set of device and interrupt vector addresses. More importantly, devices are
often combined on boards that limit the choice of addresses, so an operating system
designer does not have complete freedom over them, even if the hardware can be
changed. For example, a system that contains 4 serial line units can have them on a sin-
gle board, in which case the device addresses are contiguous; or they can be located on
several boards, in which case it may not be possible to make the addresses contiguous.

Handcrafting a new system configuration for each machine would be costly, time-
consuming, and error-prone. PC-Xinu, like most systems, relies on a configuration pro-
gram that helps reduce this cost by automating some of the chores. The program, called
config, is not part of the system proper, and it will not be shown in detail. While the im-
plementation is not important, understanding what config does is important: it takes as
input a specification of the devices and parameters, and it produces PC-Xinu source files
that generate the final object programs when compiled. Before discussing the input con-
fig expects and the general method it uses, the next section considers the entire configura-
tion process.

411



-- --

412 System Configuration Chap. 20

20.2 Static vs. Dynamic Configuration

System configuration can be performed: when the system is generated (i.e. com-
piled and linked together), when the system is started (i.e., during bootstrap), or while the
system is running. In general, postponing configuration makes the system more flexible
but increases the overhead. The most advanced systems can reconfigure themselves
dynamically as new devices are connected or old ones removed; the least advanced must
be recompiled to accommodate even minor changes like switching the baud rate of a ter-
minal.

The chief advantage of configuring at generation time (early) is that the memory im-
age contains only those device drivers needed for devices that exist. Another advantage
is that the system spends less time trying to identify hardware details during the bootstrap
process, because these details are bound into the code. The chief disadvantage of early
configuration is that a system configured for one machine cannot run on any other (un-
less they are identical, including such small details as device and interrupt vector ad-
dresses).

Deferring configuration until system startup allows the designer to build more
robust code, because a single system can operate on several hardware configurations.
During startup, the system locates devices, initializes interrupt vectors, establishes ap-
propriate entries in the device table, and somehow correlates the devices with their
drivers. It should be noted that the hardware on many machines limits the amount of
configuration that can be deferred until startup. For example, devices on the PC must be
known by the system, because it cannot determine their type or the location of their inter-
rupt vectors at run-time.

Reconfiguring at run-time allows a system to adapt to changes in the hardware
without stopping. Some systems keep all device drivers resident in main memory, so
they can associate new devices with an appropriate driver immediately. Others permit
device drivers to be loaded on demand (and unloaded on request). In such systems, the
hardware cooperates closely with the software to inform the system whenever a device or
processor becomes ready, or a ready device becomes disabled.

20.3 The Details Of Configuration In PC-Xinu

Like many systems, PC-Xinu uses a mixture of configuration strategies. Because it
is a small system designed to run on primitive hardware, much of the configuration oc-
curs early. For example, devices and associated drivers must be specified when a system
is generated. Even in a small system like PC-Xinu, some of the configuration can be
postponed until system startup. For example, the size of memory is tested after PC-Xinu
begins. Interrupt vector initialization also occurs dynamically, when the system calls the
driver initialization routines.

Most of the differences between configurations of PC-Xinu concern details of dev-
ice addresses, interrupt vectors, and driver routines. Thus, the program config, responsi-
ble for producing a system given its specification, deals primarily with device configura-



-- --

Sec. 20.3 The Details Of Configuration In PC-Xinu 413

tion. It reads a specification file that describes the types of device drivers available, as
well as a list of specific devices. It produces output files that contain the definition of a
device switch table and code to initialize it. We have already seen the output files, conf.h
and conf.c, in Chapter 11. Config reads input specifications from the file named pcxconf.
Its contents are shown below.

/* pcxconf - PC-Xinu system configuration specifications */

tty: on BIOS

-i ttyinit -o ttyopen -c ioerr

-r ttyread -w ttywrite -s ioerr

-g ttygetc -p ttyputc -n ttycntl

-iint ttyiin

on WINDOW

-i lwinit -o ionull -c lwclose

-r lwread -w lwwrite -s ioerr

-g lwgetc -p lwputc -n lwcntl

dsk: on BIOS

-i dsinit -o dsopen -c ioerr

-r dsread -w dswrite -s dsseek

-g ioerr -p ioerr -n dscntl

df: on DSK

-i lfinit -o ioerr -c lfclose

-r lfread -w lfwrite -s lfseek

-g lfgetc -p lfputc -n ioerr

dos: on MSDOS

-i ionull -o msopen -c ioerr

-r ioerr -w ioerr -s ioerr

-g ioerr -p ioerr -n mscntl

mf: on DOS

-i mfinit -o ioerr -c mfclose

-r mfread -w mfwrite -s mfseek

-g mfgetc -p mfputc -n ioerr

%

#include <bios.h>

/* console + windows */



-- --

414 System Configuration Chap. 20

CONSOLE is tty on BIOS name="tty" ivec = "KBDVEC| BIOSFLG"
GENERIC is tty on WINDOW

GENERIC is tty on WINDOW

GENERIC is tty on WINDOW

GENERIC is tty on WINDOW

/* disk device + logical files */

DS0 is dsk name="ds0"

GENERIC is df

GENERIC is df

GENERIC is df

GENERIC is df

GENERIC is df

/* MS-DOS file interface + logical files */

DOS is dos name="dos"

GENERIC is mf

GENERIC is mf

GENERIC is mf

GENERIC is mf

%

/* Configuration and size constants */

#define MEMMARK /* enable memory marking */

#define NPROC 30 /* number of user processes */

#define NSEM 100 /* total number of semaphores */

#define VERSION "6pc (1-Dec-87)" /* label printed at startup */

20.3.1 Input To Config

The input to config is divided into three sections by occurrences of the separator
character ‘%’. Section 1 contains device class and type declarations that identify major
device classes (e.g., tty) and device types (e.g., WINDOW). Section 2 contains device de-
finitions that define device names (e.g., CONSOLE) and pseudo-devices. Section 3 con-
tains constant definitions that select system options (e.g., whether to use memory mark-
ing) or override default sizes and parameters (e.g., the number of processes). We will
now consider the first two parts of the specification file in detail.



-- --

Sec. 20.3 The Details Of Configuration In PC-Xinu 415

Device class and type declarations define device class names, list the possible dev-
ice types belonging to a class, and give the default device drivers associated with each
type. For example, the declaration:

tty
on BIOS -i ttyinit -o ttyopen -c ioerr

-r ttyread -w ttywrite -s ioerr
-p ttyputc -g ttygetc -n ttycntl
-iint ttyiin

on WINDOW -i lwinit -o ionull -c lwclose
-r lwread -w lwwrite -s ioerr
-g lwgetc -p lwputc -n lwcntl

defines device class tty and two associated device types. One type, BIOS, is associated
with the PC hardware and the ROM BIOS software; the other, WINDOW, is a logical
device type. If the device class has only one type, the phrase ‘‘on unit-name’’ can be
omitted. Keywords -i, -o, -c, -r, -w, -s, -g, -p, -n, are abbreviations for the device driver
functions init, open, close, read, write, seek, getc, putc, and control; they are used to as-
sociate a set of device driver routines with the type. Similarly, keywords -iint and -oint
specify the name of the input and output interrupt drive routines. A driver routine may
be omitted; in this case config assigns ioerr as a default.

Declaring a device type serves two purposes. First, it provides an abbreviation so
individual devices can be declared without writing down the set of driver routines again
and again. Second it informs config that all the devices of a given type belong to the dev-
ice class, distinguished only by minor device numbers. Devices within the same class re-
ceive minor numbers in sequence, starting at zero. Notice that the concept of ‘‘device
class’’ has been separated from the concept of ‘‘hardware type,’’ so an arbitrary set of
devices can be thought of as a single class even if their hardware or software interfaces
differ. Thus, there may be a general device class like dsk and only one array of control
blocks for dsk devices, even though specific disks use slightly different lower-level driver
routines.

The second part of the input specification file contains device definitions. Each dev-
ice definition defines one device by giving its name, its class, and information that is not
supplied by the class (e.g., the print name and interrupt vector address). If the device
class has two or more associated device types, the device definition must also specify the
type name with the phrase ‘‘on type-name.’’ For example, the declaration of class tty,
given above, included two sets of drivers, one for type ‘‘BIOS,’’ the other for type
‘‘WINDOW.’’ A device definition for a console of class tty and of type BIOS is written:

CONSOLE is tty on BIOS name="tty" ivec="KBDVEC | BIOSFLG"



-- --

416 System Configuration Chap. 20

The definition for CONSOLE specifies a name "tty" and an input interrupt vector ad-
dress, ‘‘KBDVEC | BIOSFLG.’’ Similarly, an output vector address and a port address
can be specified, using the forms ‘‘ovec=output-vector’’ and ‘‘port=port-address,’’
respectively. Addresses can be specified as decimal, octal, or hexadecimal numbers (in
conventional C format), or − as in the example above − as quoted strings. Since the
terms KBDVEC and BIOSFLG are not known to config, C preprocessor statements such
as

#include <bios.h>

may precede the list of device specifications in the device definition section.
The information needed to fill in driver fields of the device switch entry for this dev-

ice is taken from the device class tty and type BIOS. For example, pcxconf will specify
that for device CONSOLE the driver routine corresponding to read is ttyread. The names
of driver routines can also be specified in the device definition. Values in the device de-
finition override those given in the class and type declaration when both have been sup-
plied for a particular device. For example, the definition:

CONSOLE is tty on BIOS name="tty" ivec="KBDVEC | BIOSFLG" -g mygetc

specifies the CONSOLE device as before, except that name mygetc is used for the getc
driver instead of the default name ttygetc. Such a declaration might be made to test a
new version of a driver before replacing the standard version.

Device declarations beginning with ‘‘GENERIC’’ are used to declare pseudo-
devices which are not generally accessible by their device names. The line

GENERIC is tty on WINDOW

illustrates the definition of a tty pseudo-device on the device type WINDOW. Since win-
dow pseudo-devices are allocated dynamically at run-time, it is not necessary to know
their names.

20.3.2 Computation Of Minor Device Numbers

Consider the files that config produces. Conf.h contains the declaration of the dev-
ice switch table, and conf.c contains the code that initializes it. For a given device, its
devtab entry contains a set of pointers to the device driver routines that correspond to
high-level I/O operations like open, close, read, and write. The entry also contains the
device names, input and output interrupt vector addresses, and port address. All this in-
formation comes from file pcxconf in a straightforward way.

The device switch entry also contains a field that gives what we have referred to as
the minor device number. Minor device numbers are nothing more than integers that dis-
tinguish among multiple real devices, all of which belong to the same device class. PC-
Xinu drivers use the minor device number as an index into the array of control blocks to



-- --

Sec. 20.3 The Details Of Configuration In PC-Xinu 417

associate a control block with each real device. We have assumed that the minor device
numbers are assigned sequentially, starting at zero for each class of device. For example,
Figure 20.1 shows how device ids and minor numbers are assigned on a system that has
three tty devices and two dsk devices.

device device device minor
name identifier class number� ���������������������������������������������������������������������������������

CONSOLE 0 tty 0
DISK0 1 dsk 0
DISK1 2 dsk 1
TERMINAL 3 tty 1
PRINTER 4 tty 2

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

Figure 20.1 An example of device configuration.

Notice that the three devices with device class tty have minor numbers zero, one, and
two, even though their device ids happen to be zero, three, and four. Program config as-
signs these minor device numbers based on the definitions in pcxconf. To understand
how it determines which minor number to assign to which device, we need to look close-
ly at the input.

20.4 Configuring A PC-Xinu System

To configure a PC-Xinu system, the programmer edits file pcxconf, adding or
changing device information and symbolic constants as desired. Changing constants like
MEMMARK that are used throughout the system will change the way system routines are
compiled, because each routine includes a copy of conf.h at compile time.

When run, config first reads and records the device class and type declarations. It
then reads device definitions, assigns minor device numbers, and produces the source
code in conf.c and conf.h. Finally, it appends definitions of symbolic constants from the
third section of the specification file onto conf.h, making them available to other routines.

After config produces a new version of conf.c and conf.h, routines that include
conf.h must be recompiled and grouped into library files. All the PC-Xinu procedures re-
side in the library file, xinu.lib. The entire process is controlled by the utility program
make, which automatically checks the modification dates and only recompiles procedures
when necessary. When xinu.lib has been built, configuration is complete. To run an ap-
plication program, the user compiles it and links it together with the routines in xinu.lib
and the standard C library routines.



-- --

418 System Configuration Chap. 20

20.4.1 Counting Devices

How does the system know how many devices exist? How does a driver know how
many devices it controls? Config counts devices as it processes the specification. To
pass the information on to other programs, it inserts defined constants in conf.h that
specify the number of devices of each class and the total number of devices. Constant
NDEVS is an integer that tells the total number of devices. The device-independent I/O
routines use NDEVS to test whether a device id corresponds to a valid device. Constants
of the form Nxxx tell the number of devices of class xxx (e.g., Ntty gives the total number
of tty devices). The device driver routines use these constants to declare the size of con-
trol block arrays.

20.5 System Calls And Procedures

Most hardware includes special instructions that programs use to call system rou-
tines. Even the 8088 includes one: INT. These instructions take an integer argument
that specifies the desired system procedure. When executed, they trap to a dispatch rou-
tine just like an exception or device interrupt. The system call dispatch routine must ex-
amine the argument, i, and pass control to the system procedure that performs function i.
The chief disadvantage of using the system call mechanism is that all system procedures
must be present in memory, independent of whether they will be used at run-time. Load-
ing procedures that are never used is a luxury that may not be viable on small systems.
By defining such an interface, the designer places a distinct boundary between user code
and system code, preventing users from adding more layers to the design easily.

The advantages of using special instructions to call system procedures are: the
hardware mechanism may be more efficient than normal procedure calling mechanisms,
and it allows a user program to be loaded into memory without knowing the exact ad-
dresses of system procedures. The latter may be important if the operating system needs
to load new programs from disk dynamically. In systems that have hardware-assisted
memory management, it may be necessary to use system call instructions to keep the
user’s address space separate from the system’s address space.

How difficult is it to change PC-Xinu to use hardware system call instructions? Not
difficult at all, although it will force every system procedure to be present in every
memory image. To make the change, the designer first chooses a set of system pro-
cedures that correspond to system calls. Each of these is assigned a number starting at
zero. Calls to system procedures in the user’s code must be mapped into a special system
call instruction with the appropriate integer argument. This can be done by writing spe-
cial assembler language routines that perform the mapping at run-time, or by having the
compiler recognize the names of system calls and generate special code for them.

Building the system call dispatcher is also quite easy. The code consists largely of a
branch table and a small routine that accesses the system call argument and uses it to
select the appropriate branch from the table. Control passes to the individual system pro-
cedure, which executes and returns to the dispatcher. The dispatcher then returns control
to the caller. Usually, the hardware’s system call instruction disables interrupts when ex-
ecuted and reenables them when the dispatcher returns.



-- --

Sec. 20.6 Summary 419

20.6 Summary

This book has covered the fundamentals of operating systems design, including a
look at the basic system components, the design process, and system configuration. We
have seen components for: memory management, process management, process coordi-
nation, process synchronization, interprocess communication, clock management, device
management, device drivers, and a file system. This chapter discussed how a subset of
the procedures can be selected to give a fixed set of system calls, and how the software
can be reconfigured to accommodate changes in hardware devices.

Abstractions like processes and device-independent I/O are extremely powerful no-
tions, because they make it possible for programmers to deal with complicated computa-
tions. Knowing how to design and organize software that supports such abstractions is a
skill that has many applications. Of course, some programmers will use this skill to build
general-purpose operating systems for new machines, but others will apply the same skill
to design such things as run-time systems for concurrent programming languages, data-
base systems that support concurrent transactions, and special-purpose systems for mi-
croprocessors. Independent of the application, the same general design procedure applies
− by now the reader should have a firm grasp of that design procedure and the system it
will ultimately produce.

FOR FURTHER STUDY

Few books or papers consider the topic of hardware or operating system configura-
tion in detail. The memo by Kridle et. al. [1983] is a good example of the informal way
configuration information is often disseminated; it also assumes that readers are more in-
terested in configuring hardware for the operating system than configuring the operating
system to fit their hardware.

Much has been written on the topic of portability. Miller [1978] discusses a port-
able UNIX system, while Cheriton et. al. [1979] considers a system designed to be port-
able.

EXERCISES

20.1 Replace part of the tty driver and reconfigure PC-Xinu to use your routine.

20.2 Find out how other systems are configured. Read about IBM’s SYSGEN procedure (See
if you can find someone with first-hand experience).

20.3 PC-Xinu reconfiguration takes much longer than necessary if every program is recompiled
whenever pcxconf changes. Write a config program that separates constants into several
different include files to eliminate unnecessary recompilation.



-- --

420 System Configuration Chap. 20

20.4 Discuss whether a configuration program is worthwhile. Include some estimate of the ex-
tra effort required to make a system easily configurable. Remember that a programmer is
likely to have little experience or knowledge about a system when it is first configured.


