
OPERATING SYSTEM DESIGN
VOL. I: THE XINU APPROACH

(PC EDITION)

DOUGLAS COMER

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

AT&T Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974

TIMOTHY V. FOSSUM

Department of Applied Computer Science
University of Wisconsin-Parkside

Kenosha, WI 53141

PRENTICE-HALL, INC.
Englewood Cliffs, New Jersey 07632



-- --

 Copyright 1988 All rights reserved.
This document may not be reproduced by any means

without the express written consent of the author.

(Actual copyright and permissions page to be set by Prentice-Hall - don’t forget to
include the following statements).

IBM is a registered trademark of International Business Machines Corporation
PDP-11, LSI-11, and VAX are registered trademarks of Digital Equipment Corporation
MS-DOS and Microsoft are trademarks of Microsoft Corporation
Turbo C is a trademark of Borland International, Inc.
UNIX is a registered trademark of AT&T



-- --

To our families



-- --

Contents

Preface To The PC Edition xv

Foreword To The First Edition xix

Preface To The First Edition xxiii

Chapter 1 Introduction and Overview 1

1.1 Operating Systems 1
1.2 Our Approach 2
1.3 What An Operating System Is Not 3
1.4 An Operating System Viewed From The Outside 4
1.5 An Operating System Viewed From The Inside 15
1.6 Summary 17

Chapter 2 An Overview of the Machine and Run-Time Environment 19

2.1 The Machine 19
2.2 Physical Organization Of The PC 20
2.3 Logical Organization Of The PC 21
2.4 Standard PC I/O Devices 29
2.5 The C Run-Time Environment 37
2.6 Assembly Language Interface 39
2.7 Summary 51



-- --

viii Contents

Chapter 3 List and Queue Manipulation 55

3.1 Linked Lists Of Processes 55
3.2 Implementation Of The Q Structure 57
3.3 Priority Queue Manipulation 61
3.4 List Initialization 63
3.5 Summary 65

Chapter 4 Scheduling and Context Switching 67

4.1 The Process Table 67
4.2 Process States 69
4.3 Selecting A Ready Process 70
4.4 The Null Process 75
4.5 Making A Process Ready 76
4.6 Summary 77

Chapter 5 More Process Management 79

5.1 Process Suspension And Resumption 79
5.2 System Calls 82
5.3 Process Termination 86
5.4 Kernel Declarations 88
5.5 Process Creation 90
5.6 Utility Procedures 94
5.7 Summary 96

Chapter 6 Process Coordination 99

6.1 Low-Level Coordination Techniques 100
6.2 Implementation Of High-Level Coordination Primitives 100
6.3 Semaphore Creation and Deletion 105
6.4 Returning The Semaphore Count 108
6.5 Other Semaphore Utilities 109
6.6 Summary 110

Chapter 7 Message Passing 113

7.1 Message Passing In PC-Xinu 113
7.2 Implementation Of Send 114



-- --

Contents ix

7.3 Implementation Of Receive 118
7.4 Summary 120

Chapter 8 Memory Management 123

8.1 Memory Management On The 8088 124
8.2 Dynamic Memory Requirements In PC-Xinu 124
8.3 Low-Level Memory Management Procedures 125
8.4 The Location Of Allocated Storage 125
8.5 The Implementation Of PC-Xinu Memory Management 126
8.6 Summary 131

Chapter 9 Interrupt Processing 133

9.1 Dispatching Interrupts 133
9.2 The Interrupt Dispatcher 134
9.3 Process Control Of Deferred Rescheduling 141
9.4 The Rules For Interrupt Processing 144
9.5 Rescheduling While Processing An Interrupt 145
9.6 PC Interrupt Vectors 146
9.7 Summary 147

Chapter 10 Real-Time Clock Management 149

10.1 The Real-Time Clock Mechanism 149
10.2 PC Real-Time Clock Interrupts 150
10.3 The Use Of A Real-Time Clock 151
10.4 Delta List Processing 152
10.5 Putting A Process To Sleep 154
10.6 Delays Measured In Seconds 156
10.7 Clock Interrupt Processing 158
10.8 Awakening Sleeping Processes 159
10.9 Deferred Clock Processing 160
10.10 Clock Initialization 161
10.11 Summary 162

Chapter 11 Device Independent Input and Output 165

11.1 Properties Of The Input And Output Interface 166
11.2 Abstract Operations 166



-- --

x Contents

11.3 Binding Abstract Operations To Real Devices 167
11.4 Binding I/O Calls To Device Drivers At Run-Time 168
11.5 The Implementation Of High-Level I/O Operations 171
11.6 Translating Device Names Into Descriptors 175
11.7 Opening And Closing Devices 175
11.8 Null And Error Entries In Devtab 177
11.9 Initialization Of The I/O System 178
11.10 Interrupt Vector Initialization 182
11.11 Summary 184

Chapter 12 An Example Device Driver 187

12.1 The Device Type Tty 187
12.2 Upper And Lower Halves Of The Device Driver 188
12.3 Synchronization Of The Upper And Lower Halves 190
12.4 Control Block And Buffer Declarations 190
12.5 Upper-Half Tty Input Routines 194
12.6 Upper-Half Tty Output Routines 198
12.7 Lower-Half Tty Driver Routines 202
12.8 Keyboard Interrupt Handling 212
12.9 Tty Control Block Initialization 212
12.10 Device Driver Control 214
12.11 Summary 216

Chapter 13 System Initialization 219

13.1 Starting From Scratch 219
13.2 Booting PC-Xinu 220
13.3 System Startup 221
13.4 Transforming The Program Into A Process 228
13.5 Summary 231

Chapter 14 Window Management 233

14.1 Windows As Pseudo-Devices 233
14.2 Window-Specific Fields In The tty Structure 234
14.3 Opening A Window 236
14.4 Upper-Level Window Driver Routines 245
14.5 The Lower-Half Window Output Server Process 255
14.6 Low-Level PC Screen Operations 260
14.7 Window Keyboard Input 262



-- --

Contents xi

14.8 Window Driver Initialization 263
14.9 Summary 264

Chapter 15 High-Level Memory Management and Message Passing 267

15.1 Self-Initializing Modules 268
15.2 Memory Marking 269
15.3 Implementation Of Memory Marking 269
15.4 Partitioned Space Allocation 271
15.5 Buffer Pools 272
15.6 Returning Buffers To The Buffer Pool 275
15.7 Creating A Buffer Pool 277
15.8 Initializing The Buffer Pool Table 278
15.9 Communication Ports 279
15.10 The Implementation Of Ports 279
15.11 Other Operations On Ports 289
15.12 Summary 294

Chapter 16 A Disk Driver 297

16.1 Operations Supplied By The Disk Driver 297
16.2 The List Of Pending Disk Requests 298
16.3 Enqueuing Disk Requests 300
16.4 Optimizing The Request Queue 303
16.5 Driver Initialization 305
16.6 The Upper-Half Read Routine 307
16.7 The Upper-Half Write Routine 309
16.8 Implementation Of The Upper-Half Write Routine 310
16.9 The Upper-Half Seek Routine 311
16.10 The Lower-Half Of The Disk Driver 313
16.11 Flushing Pending Requests 315
16.12 Summary 318

Chapter 17 File Systems 321

17.1 What Is A File System? 321
17.2 Disk And File Servers 323
17.3 A Local File System 323
17.4 Data Structures For The File System 324
17.5 Implementation Of The Index Manager 325
17.6 Operations On I-Blocks 327



-- --

xii Contents

17.7 The Directory Structure 333
17.8 Using The Device Switch Table For Files 334
17.9 Establishing A Pseudo-Device 337
17.10 Pseudo-Device Driver Routines 343
17.11 Summary 358

Chapter 18 MS-DOS File Interface 361

18.1 File Operations Available Through MS-DOS 361
18.2 Using The Device Switch Table For MS-DOS Files 367
18.3 Establishing A Pseudo-Device 369
18.4 MS-DOS Pseudo-Device Driver Routines 373
18.5 MS-DOS File System Control Operations 382
18.6 Summary 383

Chapter 19 Exception Handling and Support Routines 385

19.1 Exceptions, Traps, And Illegal Interrupts 385
19.2 Initialization Of Interrupt Vectors 386
19.3 Implementation Of Panic 386
19.4 Formatted Output 389
19.5 The Butler Process 399
19.6 Summary 409

Chapter 20 System Configuration 411

20.1 The Need For Multiple Configurations 411
20.2 Static vs. Dynamic Configuration 412
20.3 The Details Of Configuration In PC-Xinu 412
20.4 Configuring A PC-Xinu System 417
20.5 System Calls And Procedures 418
20.6 Summary 419

Appendix 1 A Quick Introduction to C 421

Appendix 2 PC-Xinu Programmer’s Manual 429



-- --

Contents xiii

Bibliography 487

Index 495



-- --

Preface To The PC Edition

A singular development has led to this new edition of Operating System Design -
The Xinu Approach. That development is the almost universal availability of IBM
Personal Computers and compatible machines from other vendors, which we simply call
PCs. These versatile and inexpensive machines are comparable in performance and
memory capacity to the LSI-11 systems described in the first edition of this text.
Moreover, PCs support a variety of programming tools sufficient to carry out the entire
design and development of an operating system like Xinu on the PC itself. The PC
makes it possible for small groups and individuals to study and experiment with
operating systems without spending inordinate amounts of money on laboratory facilities.

Experience in teaching operating systems has convinced us that students learn best
when they participate in the design, implementation, and modification of a real operating
system. Hands-on laboratory work allows students to observe problems and solutions in
detail. It gives them intuition and demonstrates the importance of abstractions. In this
regard, Xinu works well as a laboratory tool. It is sufficiently sophisticated for use in
working systems (e.g., volume 2 shows how it has been used to implement network
communication and a user interface), yet it is simple enough for one person to understand
in its entirety. The complete source code is available for a nominal charge and it
compiles with either of the popular Microsoft or Turbo C compilers (see the tear-out card
in the back of the book for information on ordering).

Like the previous edition, this book guides the reader through the design of a
complete operating system, but uses the PC version of Xinu as its example. Although
PC-Xinu has over 150 procedures and 8000 lines of code, it retains the remarkable
simplicity that results from a hierarchical design. The text discusses design and
alternatives, while the exercises suggest possible modifications. We encourage the
reader to study the code carefully and to try as many of the exercises as possible.

One measure of an operating system design is how easily it adapts to new hardware
architectures. Xinu has done quite well in making the transition across a variety of
machines. It now runs on many Digital Equipment Corporation LSI 11, PDP 11, and
VAX machines; Apple Computer Corporation MacIntosh, MAC plus, and MAC 2; Sun
Microsystems Inc. Sun 2 and Sun 3; National Semiconductor 32000-based machines;
and, as this text shows, on the PC. Almost the complete design, as well as much of the
code, remains unchanged across all implementations, demonstrating its flexibility.

While the PC presents an opportunity, it also poses an obstacle. The hardware and
software configuration of the PC is not well suited to a multi-tasking environment and, in
many ways, makes concurrent execution more difficult than necessary. We have elected



-- --

xvi Preface To The PC Edition

to use the PC Basic Input/Output System (BIOS) that vendors usually supply in read-only
memory (ROM) to implement low-level I/O operations. Unfortunately, the procedures
supplied by the ROM BIOS are not reentrant, and avoiding reentrancy problems results
in awkward interrupt handlers. Using ROM BIOS calls also makes the operating system
execute slower than a system that handles hardware-level input/output directly.
However, using the ROM BIOS has an overwhelming quality: it avoids incompatibilities
among vendor’s hardware, allowing the same operating system to run on a wide variety
of PC brands.

We have omitted the Xinu ring network from this edition for two reasons. First,
newer technologies make it obsolete. Second, volume 2 provides a more complete
discussion of networks and the integration of protocol software into an operating system.
Two new chapters replace the two network chapters. One discusses windows and the
other discusses an interface to the MS-DOS file system. Readers familiar with the PC
will find both informative because they show how easy it is to accommodate such
features in the operating system design.

Chapters 1-13 of this edition follow the topics of the first edition, with changes
limited to the code. For example, the 8088 processor uses a 16-bit FLAGS register,
while the LSI-11 stores processor status in the low-order 8 bits of its program status
word. To accommodate the difference, we have introduced minor changes in the disable
and restore procedures that save and restore processor status. In making changes, our
goal has been to preserve the structure of the system wherever possible. For example,
because the PC uses a memory-mapped video display, console output cannot be interrupt
driven as in most versions of Xinu. We elected to retain the Xinu device and buffer
structure by substituting a process that moves characters to the display memory in place
of the lower-half interrupt routines.

Chapter 14, new to this edition, develops a simple window mechanism that permits
non-overlapping rectangular screen areas on the PC’s video display to serve as logical tty
devices. Although not as sophisticated as the bit-mapped graphics available on some
computers, our window scheme demonstrates the basic principles.

Later chapters follow the LSI-11 edition. Chapters 15 through 17 cover higher-level
memory management and queued messages, a low-level disk driver, and a Xinu file
system. A new Chapter 18 develops routines that provide access to MS-DOS files,
putting them in the same conceptual and operational framework as Xinu files.

In addition to those who helped with the first edition, we gratefully acknowledge the
contributions of many people whose assistance made this edition possible. At Purdue, so
many people have worked on Xinu over the past six years that their contributions cannot
be enumerated individually. Andy Thomas initially transported Xinu to the IBM PC and
made his work available to others. Charlotte Tubis edited the manuscript extensively and
suggested ways to improve wording.

At the University of Wisconsin-Parkside, undergraduate students helped refine the
details of the PC-Xinu implementation. Tim Knautz helped design and implement
window devices and found several bugs in an early version of PC-Xinu.



-- --

Preface To The PC Edition xvii

Bob Duchesneau devised a pipe mechanism similar to UNIX pipes, Erhard
Trudrung implemented receive with timeout, Andy Krieg added RAM disk support, and
Dave Datta built a printer device driver.

Dave Brown, who also configured in multiple disk devices, file protection modes
and file time-stamps, hooked the pieces together, tested it mercilessly, and found
additional bugs.

Marty Wegner uncovered a number of inconsistencies and conceptual lapses that
resulted in the most recent improvements to the code. He also implemented extensive
enhancements, including the Volume II shell running concurrently in multiple windows.

Paul Sorensen and Gene Lai kept the machines in the UW-Parkside Operating
Systems Laboratory going in spite of the misuse to which they were subjected.

Chris Comer patiently and carefully read several drafts for errors and made many
good suggestions. Ella Fossum contributed more patience and understanding than could
reasonably be expected from the wife of a co-author.

Zenith Data Systems kindly provided Z-158 PC and Z-241 AT-type machines used
to develop PC-Xinu.

Finally, we are indebted to Purdue University and the University of Wisconsin-
Parkside for their support.

Douglas Comer and
Timothy Fossum

January 26, 1988



-- --

Foreword To The First Edition

The quasars are so remote and the quarks so minute, it seems impossible to
comprehend all dimensions of our physical universe. For example, the most distant
quasar is on the order of 1027 meters distant and the quarks are on the order of 10−18 in
diameter. This is a span of 45 orders of magnitude from the largest known distance to
the smallest. The ratio of the largest to the smallest known distance, 1045 , is miniscule
when compared to the number of subatomic particles in the universe, approximately
1080 .

When physical constraints are removed, human thought will routinely attempt to
grapple with numbers incomprehensibly larger than these. For example, the largest
known Fibonacci number exceeds 10208 and the largest known prime exceeds 103374 .
One of the largest numbers to appear in a mathematical proof (Skewes’ number) is on the
order

10 10 10 34

The combinatorial spaces through which our computer programs must search for
solutions can easily reach such staggering sizes.

How can the human mind overcome barriers of such incomprehensible size? How
can we assemble comprehensible computers and programs capable of dealing with vast
spaces of abstract objects, the largest of which are many orders of magnitude bigger than
the smallest?

Nature long ago solved this problem. It is the hierarchical ordering principle of
building up structures by levels and clusters. Issac Asimov has, over the years, explored
this principle by studying ‘‘ladders’’ measuring the universe by length, area, volume,
mass, density, pressure, time, speed, and temperature.† There is a film, Powers of Ten,
that explores the ladder of length with fascinating visual simulations; it can be seen in a
display at the Smithsonian Air and Space Museum in Washington, DC.

The Powers of Ten film simulates a viewscreen spanning a distance of 10n meters
for a range of integer ‘‘steps’’ on a ladder of length n. Initially, the viewscreen is 1 meter
wide (Step 0) and shows a picnicker on a Chicago football field. The viewer ascends the
ladder of length as the viewscreen expands its scope by a factor of 10 every 10 seconds.
For example, at Step 2, the screen contains the entire football field; at Step 5, the Chicago
metropolitan area; at Step 8, the planet earth; at Step 13, the solar system; at Step 19, the
local star group; at Step 21, the Milky Way Galaxy; and at Step 22, the local cluster of
galaxies. Finally, at Step 27, the screen shows a few faint blips, each a quasar or cluster
� �������������������������������������������������������������

†See The Measure of the Universe, Harper and Row, New York, 1983; and Asimov on Numbers, Pocket
Books, New York, 1977.



-- --

xx Foreword To The First Edition

of galaxies. The film then returns to the starting point and begins descending the ladder
by shrinking the screen’s scope by a factor of 10 every 10 seconds. For example, at Step
-2, the screen shows a small patch on the picnicker’s arm; at Step -5, individual cells in
the picnicker’s skin; at Step -9, molecules; at Step -10, atoms; at Step -13, protons and
neutrons. Recent advances in physics have measured quarks, the smallest subatomic
particles known, at Step -18.

These explorations of the universe, ascents and descents on ladders of measure,
show the same striking patterns:

a. The universe is mostly empty space.

b. At each step there are well-defined objects with well-defined rules of
interaction.

c. The objects of a given step are composed of objects of lower steps and are
constituents of objects of higher steps.

The hierarchical ordering principle − the Principle of Steps − is nature’s way of
structuring the universe. It applies across all known steps of all ladders of measure, and
it probably applies at new steps yet to be discovered.

By the middle 1960s, computer scientists were becoming seriously concerned about
the sizes of computer programs. On a ladder of storage, the largest user programs of the
day were Step 5 − i.e., when compiled, occupied on the order of 105 words of file store.
The largest programs of all, operating systems, were then at Step 6 and were threatening
to reach Step 7. You will not be surprised, then, when I tell you that, of all computer
scientists, operating systems designers were the most anxious to apply nature’s Principle
of Steps to impose order on large programs.

At the First ACM Symposium on Operating Systems Principles (SOSP) in 1967,
Dijkstra reported organizing the software of the THE operating system into seven levels
(steps). Each level consisted of a collection of abstract objects and a set of rules
governing their behavior. (The rules were enforced by encoding them into operating
system procedures called ‘‘primitive operations’’ or simply ‘‘primitives.’’) The internal
structure of an object at a given level was invisible at that level but could be explained in
terms of objects and operations of levels below. Dijkstra had applied nature’s Principle
of Steps to the design of a large program and, in so doing, had constructed a
comprehensible Step 5 operating system.

The Principle of Steps was employed in other experimental operating systems such
as Liskov’s VENUS operating system (4 levels, 1972) and SRI’s Provably Secure
Operating System (17 levels, 1975). This principle has influenced programming
language design as well, under the somewhat mystical name of ‘‘data abstraction;’’
examples include Simula (1967), Concurrent Pascal (1975), Ada (1980), and Smalltalk
(1981). It has influenced software engineering, under the name ‘‘top-down refinement.’’
It has influenced computer communications, under the name ‘‘layered network
protocols.’’



-- --

Foreword To The First Edition xxi

Despite its presence in some rivulets of computer science for many years, the
Principle of Steps has been slow to flow into the mainstream of computer systems design.
Skeptics argue that systems constrained by this principle are inherently less efficient than
systems constructed by expert programmers not so constrained. They offer two lines of
argument. The first, which shows up most clearly in ‘‘layered network protocols,’’ is
that each level of software has access exclusively to the next lower level. This leads to a
design in which messages must be passed down through intermediate levels to gain
access to objects several steps down in the hierarchy. In fact, the Principle of Steps
merely requires objects to be composed solely of lower objects; it does not rule out direct
access to any visible lower object. The second argument is that constraints on structure
increase system size by removing opportunities for optimizations. This remarkably
persuasive argument has never been supported by data. In fact, all operating systems
designed with explicit attention to hierarchical ordering have been significantly smaller
than other systems of similar function.

Doug Comer’s book, − this book − is about XINU, an operating system for a set of
LSI 11 computers capable of cooperative computation via a store-and-forward ring
network. (XINU stands for ‘‘XINU is not UNIX,’’ and is pronounced ‘‘zee-new.’’)
XINU incorporates the concepts of UNIX into a level-structured operating system that
can run in as little as 4000 bytes (2000 words) of main store. The entire set of XINU
source files include, with comments, just under 5850 lines of C code and 650 lines of
assembler code. (Without comments, there are 4300 lines of C code and 550 lines of
assembler.)

So there you have it: a real, Step 5 operating system with all the functionality of the
Step 7 operating systems of the early 1970s. Pretty impressive, isn’t it? Nature’s
Principle of Steps works.

Peter J. Denning

August 7, 1983



-- --

Preface To The First Edition

Building a computer operating system is like weaving a fine tapestry − it consists of
producing a large, complex object in many small steps. Like stitches in a tapestry, details
are important because mistakes are noticeable. But understanding details and the
mechanics of assembling pieces is only a small part of the problem; a masterful creation
requires a pattern that the artisan can follow.

Surprisingly, few operating system textbooks or courses explain that there is a
pattern from which systems can be built. Some students still hear the rhetoric that often
was taught a decade ago: ‘‘operating system design is mostly black art and little
science.’’ Textbooks reenforce these ideas by focusing on details that have especially
elegant explanations, independent of how such topics pertain to modern systems. As a
result, students are left with the feeling that operating systems consist of a few well-
understood pieces that are somehow connected by what is otherwise a morass of
mysterious code containing many machine-dependent tricks.

Now that inexpensive microprocessors have become abundant more programmers
are being asked to design software systems starting with the bare machine. It is
important that programmers working with such hardware know the fundamentals of
operating system design for two reasons. First, operating system primitives provide
incredible intellectual leverage − it is impossible to devise systems that exploit the power
of these new computers without understanding operating systems. Second, the effort that
has been expended in operating system research is staggering − it is unlikely that any
programmer would ever stumble onto a good design without rigorous training.

This book attempts to remove the magic from operating system design and to
consolidate the body of material into a systematic discipline. It reviews the major system
components and a structure that organizes them in an orderly, understandable manner.
Unlike texts that survey the field by presenting as many alternatives as possible, it guides
the reader through the construction of a conventional process-based system, using
practical, straightforward primitives. It begins with a bare machine and proceeds step-
by-step through the design and implementation of a small, elegant system. The system,
called Xinu, serves as an example of and a pattern for system design.

Although Xinu is small enough to fit into the text, it includes all the components that
constitute an ordinary operating system: memory management, process management,
process coordination and synchronization, interprocess communication, real-time clock
management, device drivers, intermachine communication (networks), and a file system.
These components are carefully organized into a hierarchy of layers, making the
interconnections among them clear, and the design process easy to follow. Despite its



-- --

xxiv Preface To The First Edition

size, Xinu retains much of the power of larger systems. Readers accustomed to
commercial microcomputer ‘‘operating systems’’ will be pleasantly surprised by its
sophistication. An important lesson to be learned is that good system design can be as
important on small machines as it is on large ones.

With only a few exceptions, the book covers topics in the sequence that a designer
follows when building a system. Each chapter describes a component in the design
hierarchy and presents software that illustrates how to implement primitives in that layer.
This approach has several advantages. First, each chapter explains a larger subset of
Xinu than the previous ones, making it possible to think about the design and
implementation of a given layer independent of the implementation of preceding or
succeeding layers. Second, the details of any chapter can be skipped on first reading − a
reader need only understand what services the routines in that chapter (layer) provide, not
how those routines are implemented. Third, the reader sees the implementation of a
procedure before that procedure is used to build others, making clear how each layer is
built out of previous ones. Fourth, intellectually deep subjects like concurrency come up
early, before many procedures have been introduced, while the bulk of the code
(intermachine communication and file systems) comes at the end when the reader is
better prepared to understand the details.

Chapters 1-13 describe a ‘‘minimal’’ system that supports concurrent processing,
terminal input and output, and real-time clock management. Although the minimal
system may not seem useful at first, it has served as the basis for several applications,
including a VLSI chip tester. Later chapters describe machine-to-machine
communication (computer network) software and the file system that are built on top of
the minimum system.

Unlike many other books on operating systems, this one does not attempt to review
every alternative for each system component, nor does it survey existing commercial
systems. Instead, it shows the implementation details of one set of primitives, usually the
most popular set. For example, the chapter on process coordination explains semaphores
(the most widely accepted process coordination primitives), relegating a discussion of
other primitives (e.g., monitors) to the exercises. Our goal is to remove all the mystery
about how primitives can be implemented on conventional hardware. Once the essential
magic of a particular set of primitives is understood, the implementation of alternative
versions should be easy to master.

The book is designed for advanced undergraduate or graduate-level courses.
Although there is nothing inherently difficult about any topic, covering most of the
material in one semester demands a rapid pace (usually unattained by undergraduates).

In lower-division system courses, class time may be needed to help students
understand the motivation and details that are presented. Although such exposition may
seem unnecessary, experience has shown that students at this level find concurrency an
extremely difficult notion. Many are not adept at reading sequential programs, and fewer
still really understand the details of a run-time environment or machine architecture; they
need to be guided through the chapters on process management carefully. It helps
immensely if students have hands-on experience with the system so they can observe it in
action. The host software runs on a VAX computer under the UNIX operating system.



-- --

Preface To The First Edition xxv

Ideally, students will have the opportunity to use Xinu during the first few day or weeks
before they try to understand its internal structure. Chapter 1 provides a few examples
and encourages experimentation. (It is surprising how many students take system
courses without ever writing concurrent programs.)

In advanced courses, students understand concurrent programming and machine
architecture. They can pick up details from the text, leaving time in the classroom to
discuss alternative sets of primitives, alternative implementations, and proof of
correctness. Students should be encouraged to read some of the many journal articles
and books on operating systems, and to see how the primitives in Xinu extend into more
complex hardware systems.

Programming projects are strongly encouraged at all levels. Many exercises suggest
modifying or measuring the code, or trying alternatives. (The software is available for a
nominal charge). Many of the exercises suggest improvements, experiments, and
alternative implementations. Larger projects are also possible. Examples that have been
used include: a virtual circuit protocol layer to go on top of the present datagram layer;
the design of an internet naming and addressing scheme; a remote file server; a remote
login facility to allow machines to log into a host operating system across the ring
network; and the design of a text editor that minimizes the cost of sending files across the
network. Other students have transported Xinu to processors like the Intel 8086 and
Motorola 68000.

Some background in basic programming is assumed. The reader should understand
basic data structures like linked lists, stacks, and queues, and have written programs in a
high-level language like Pascal, PL/I, or C.

I encourage designers to code in high level languages whenever possible, reverting
to assembly language only when necessary. Following this approach, I have written most
of Xinu in C. Appendix 1 contains a quick introduction to C for readers who are
interested only in reading the programs. It explains C constructs by comparing them to
similar constructs in Pascal. Readers have an opportunity to develop their ability to read
C code in Chapter 3 which deals with a familiar subject (linked lists). The linked list
procedures form an especially easy introduction to C because they do not contain any
explicit references to concurrent process control constructs. Readers who want to write
programs or make substantial changes to Xinu can find more detail about C in the book
by Kernighan and Ritchie [1978].

A few machine dependent routines are written in LSI 11 assembler language (almost
identical to that of the popular PDP 11). However, the explanations and comments
accompanying these routines make it possible to understand them without learning
assembler language in detail.

I gratefully acknowledge the help of many people who contributed ideas, hard work,
and enthusiasm to the Xinu project. At Purdue, a group of graduate students helped with
the initial design and implementation. They also gathered together most of the cross-
development software.

Andre Bondi and Subhash Agrawal read through early versions of the process
manager and context switch code before a viable compiler and downloader were
available.



-- --

xxvi Preface To The First Edition

Steve Salisbury built a C library for Xinu that was compatible with the UNIX C
library.

Matt Bishop, Ken Dickey, and Bhasker Parathasarathy adapted a PDP 11 C
compiler to the LSI 11.

Dave Schrader devised a process structure for the store-and-forward ring network,
and suggested the ports mechanism for passing frames between layers.

Sean Arthur and Vincent Shen spent many hours wiring together a reconfigurable
star-shaped ring network and connections to the host computer.

Derrick Burns, a student at Princeton University, transported Xinu to a Motorola
68000 system.

Bob Brown and Chris Kent wrote the downloader, uploader, and post-mortem
debugger. Both made helpful suggestions about the choice of primitives and the
implementation details. Bob put together an early version of kprintf that helped
immensely with debugging, and he contributed several pieces of code including the
routine to size memory, an early version of the communication ports, and modifications
to defer the clock.

Several colleagues provided valuable suggestions. Peter Denning first suggested the
use of layering. He gave me a draft of Denning et. al. [1981] and provided pointers to
the other literature, all of which influenced the design.

Tom Murtagh helped work through several layering details.
Janice Cuny, Brian Kernighan, Edmund Lien, and Jacobo Valdes, all commented on

an early draft. Bob Brown and Ran Ginosar provided especially helpful suggestions on
later versions.

I thank my wife, Chris, for patiently reading many drafts for technical accuracy and
syntactic correctness.

I owe much to my experiences, good and bad, with commercially available
operating systems. Although Xinu differs internally from existing systems, the
fundamental ideas are not new. Several of them came from the UNIX Time-Sharing
System developed at Bell Laboratories (see Ritchie and Thompson [1974]). Readers
familiar with UNIX should be aware, however, that although many of the ideas,
techniques, and names come from UNIX, the two systems are quite different internally −
programs written for one system do not usually run on the other.

Finally, I am indebted to Purdue University and Bell Laboratories for support of the
project.

Douglas Comer

August 15, 1983


