
16

A Disk Driver

This chapter describes the design of device driver routines for secondary storage
devices called disks. At this level, the disk is viewed as a randomly accessible array of
blocks. The next chapter describes how higher layers of the file system software build on
this driver to provide named files and directories.

Disk drivers differ from the single-character terminal drivers covered earlier in
several ways. Because disk devices are more complex than terminals, the interaction
between the driver software and the device is more complicated. The disk is a random
access device. Therefore, the driver must specify where on the disk data transfer should
take place. Even the basic hardware differs. Disk hardware uses direct-memory-access
mode (DMA), so it does not interrupt the CPU for every character transfer. Instead, the
driver must arrange to transfer data in large blocks.

16.1 Operations Supplied By The Disk Driver

When users think of secondary storage devices like disks, they visualize programs
or textual material organized into files, with files further organized into directories. It is
the file system software that provides such facilities, not the hardware. At the device
driver level, a disk is nothing more than a large array of data blocks that can be accessed
randomly using two basic operations: copy the contents of a selected block from disk to
memory, or copy the contents of memory to a selected block on disk. The data blocks,
which correspond to sectors on the disk, are all the same size. (The disk used with PC-
Xinu has 512 bytes per sector, a typical size).

Because the raw hardware provides block transfer, it makes sense to design a disk
driver that reads and writes entire blocks. The question becomes how to include the no-
tion of ‘‘block selection’’ in the existing high-level I/O operations. A high-level seek
operation might be appropriate, because it is designed to move to a specified position in a
file. However, requiring a user first to position the disk arm and then read or write to

297

-- --

298 A Disk Driver Chap. 16

transfer data would be clumsy and inconvenient. To keep the driver interface simple, we
will design the driver always to transfer exactly one block, and to use the ‘‘length’’ argu-
ment of read or write to specify a position. For example, the call

read (DISKDEV, buff, 5)

requests the driver to read all of block five into memory starting at location buff.
As long as calls to read and write include a block position, a separate seek operation

is unnecessary. In many systems, however, disk controller hardware does not permit
simultaneous transfer from two disks even though it does allow simultaneous motion of
all disk arms. Operating systems using such hardware can significantly reduce disk ac-
cess times by moving one disk arm to the desired position while reading a block from
another disk. Arm movement is the most costly part of disk access, so overlapping seeks
with computation (and transfer operations on other disks) is an important optimization.
To ensure that higher layers of software can perform such optimization, a seek operation
will be included in the design even though the PC BIOS does not support it.

Thus, the driver will supply three operations to higher level routines: read, which
copies a single block from the disk into memory; write, which copies data from memory
onto a specified disk block; and seek, which conceptually positions the disk head over a
specified block without transferring data. Having decided on the interface, we are ready
to begin writing the driver. Before studying the three driver routines that correspond to
the high-level operations, the reader should review the BIOS disk interface introduced in
Chapter 2.

16.2 The List Of Pending Disk Requests

Like other device drivers, disk driver routines are partitioned into two sets, the
upper-half and the lower-half, that communicate through message-passing and a shared
data structure. The shared structure includes a list of pending requests. Upper-half rou-
tines enqueue a request for an operation, send a message to start the lower-half process if
it is idle, and then wait for it to complete. The lower-half, a process created at system in-
itialization, awakens the process waiting for the request that just completed and starts the
next operation.

Before considering the upper-half and lower-half driver procedures, we need to de-
cide on the content and format of the data area that they share. Following the terminolo-
gy used with previous drivers, the shared structure is called a control block. The list of
pending operations forms the centerpiece of this control block. In practice, the designer
only adds fields to the control block structure as the driver routines are built, but we will
examine all the fields now and see how the driver uses them later in the chapter.

Structure dsblk, found in file disk.h, defines the disk control block in C.

-- --

Sec. 16.2 The List Of Pending Disk Requests 299

/* disk.h - dssync, dsdirec */

typedef unsigned int DBADDR; /* disk data block addresses */

#define DBNULL (DBADDR)0177777 /* null disk block address */

#include <iblock.h>

#include <dir.h>

struct dsblk { /* disk driver control block */

struct dreq *dreqlst; /* list of pending requests */

int dnum; /* device number of this disk */

int dibsem; /* i-block mutual exclusion sem.*/

int dflsem; /* free list " " " */

int ddirsem; /* directory " " " */

int dnfiles; /* num. of currently open files */

struct dir *ddir; /* address of in-core directory */

int dsprocnum; /* disk server process number */

};

extern struct dsblk dstab[];

struct dreq { /* node in list of requests */

DBADDR drdba; /* disk block address to use */

int drpid; /* process id making request */

char *drbuff; /* buffer address for read/write*/

int drop; /* operation: READ/WRITE/SEEK */

int drstat; /* returned status OK/SYSERR */

struct dreq *drnext; /* ptr to next node on req. list*/

};

#define DRNULL (struct dreq *) 0 /* null pointer in request list */

#define DIRBLK 0 /* block used to hold directory */

#define DONQ 2 /* status if request enqueued */

#define DBUFSIZ 512 /* size of disk data block */

#define DREQSIZ sizeof(struct dreq) /* size of disk request node */

#define NDSECT 720 /* no. of physical disk sectors */

#ifndef NDBUFF

#define NDBUFF 10 /* number of disk data buffers */

#endif

#define NDREQ 10 /* number of disk request buf. */

#define DREAD 0 /* read command in dreq.drop */

#define DWRITE 1 /* write " */

#define DSEEK 2 /* seek " */

-- --

300 A Disk Driver Chap. 16

#define DSYNC 3 /* sync " (test-disk-ready) */

#define DSPRIO 200 /* disk server process priority */

extern int dskrbp; /* disk request node buffer pool*/

extern int dskdbp; /* disk data block buffer pool */

extern char *dskbcpy(); /* copy to new disk block */

/* disk control function codes */

#define DSKSYNC 0 /* synchronize (flush all I/O) */

#define DSKNAME 1 /* rename a file */

#define DSKZAP 2 /* remove a file */

#define dssync(ddev) control((ddev),DSKSYNC);

#define dsdirec(ddev) (((struct dsblk *)(devtab[ddev].dvioblk))->ddir)

Field dnum in structure dsblk should look familiar because it occurs in all driver control
blocks: dnum gives the device id for the disk. Other fields present no surprises. Field
dsprocnum is the process id of the disk server process. Field dreqlst points to the list of
requested operations (or equals DRNULL if the list is empty). The driver follows an im-
portant invariant:

The first request on the list is always the one that the hardware is per-
forming; if the list is empty, the server process is idle.

The list of pending requests, headed by field dreqlst, is a singly linked list where
each node on the list has the form given by structure dreq. In a given node, field drdba
specifies the number of the disk block that the operation will affect, and field drop speci-
fies the operation to be performed. If the operation transfers data, field drbuff gives the
memory address for the transfer. This address is assumed to be the start of a 512-byte
block. The remaining field, drstat, is used to communicate status information from the
lower-half to the upper-half. The lower-half records information about errors that occur
during the operation, and the upper-half extracts the information and passes it to the call-
er.

16.3 Enqueuing Disk Requests

To reduce the time needed to restart a disk operation after one completes, the disk
driver routines follow this rule:

-- --

Sec. 16.3 Enqueuing Disk Requests 301

The lower-half disk driver processes I/O requests in the order that they
occur on the request list. When one completes, it is removed from the
list and the next one is started.

Thus, the responsibility for ordering requests in a sensible way falls to the upper-half rou-
tines that enqueue requests.

Why is the order of requests important? Remember that disk accesses are slow
compared to the processor and memory speed. Most of the time is expended moving the
disk arm; the time required is approximately proportional to the distance moved. If all
accesses refer to a small locality, the time per access is lower than if the requests refer to
blocks scattered over the disk. Unfortunately, the driver receives requests from all
processes, so the sequence of blocks specified are not usually restricted to a small locali-
ty, even if each individual process accesses blocks sequentially. Honoring these requests
in a first-in-first-out (FIFO) order usually means moving the arm back and forth across
the disk frequently. To reduce the arm motion, disk drivers reorder requests in an at-
tempt to group together requests that access blocks in a small area. (Recall from Chapter
2 that the driver can afford to spend much time organizing requests, even if it only elim-
inates one or two sweeps of the arm.)

Given a set of outstanding requests, the driver must decide which one to satisfy next.
Ideally, it should move the disk arm as little as possible, but postponing requests for out-
lying blocks indefinitely would be unfair because it would always favor requests in the
current locality. Furthermore, the amount of time the driver spends reordering requests
should be minimized. What is the best way to satisfy the goals of efficiency and fair-
ness? There is no ‘‘best’’ way; it depends largely on the order in which requests arrive,
the mixture of processes that are executing, and the characteristics of the hardware. For-
tunately, compromises are possible. With only a small amount of CPU time, the driver
can produce an order of requests that takes far less time than honoring requests first-
come-first-serve.

Most drivers use rule-of-thumb, or heuristic procedures, to help optimize disk
accesses. The heuristics, which are easy to compute, usually group requests by locality.
For example, we will adopt the following heuristic which orders requests by block posi-
tion.

When adding a request for block B to the existing list of requests,
schedule it to be performed between requests i and i+1 if the disk arm
will pass over block B on its way from i to i+1. If no such pair i and
i+1 exist, add the new request to the end of the list.

The general idea is to force the disk arm to ‘‘sweep’’ back and forth across the surface,
going from low numbered blocks to high numbered ones and back again. Inserting
blocks in the existing list optimizes arm movement because it accesses blocks when the
arm passes over them. Inserting outlying requests at the end of the list either extends the
sweep in one direction or starts it moving in the other.

-- --

302 A Disk Driver Chap. 16

Implementing the request ordering heuristic is straightforward; as procedure dskenq
demonstrates.

/* dskenq.c - dskenq */

#include <conf.h>

#include <kernel.h>

#include <disk.h>

/*--

* dskenq -- enqueue a disk request and start I/O if disk not busy

*--

*/

dskenq(drptr, dsptr)

struct dreq *drptr;

struct dsblk *dsptr;

{
struct dreq *p, *q; /* q follows p through requests */

DBADDR block;

int st;

if ((q=dsptr->dreqlst) == DRNULL) {
dsptr->dreqlst = drptr;

drptr->drnext = DRNULL;

sendn(dsptr->dsprocnum);

return(DONQ);

}
block = drptr->drdba;

for (p = q->drnext ; p != DRNULL ; q=p,p=p->drnext) {
if (p->drdba==block && (st=dskqopt(p, q, drptr)!=SYSERR))

return(st);

if ((q->drdba <= block && block < p->drdba) | |
(q->drdba >= block && block > p->drdba)) {

drptr->drnext = p;

q->drnext = drptr;

return(DONQ);

}
}
drptr->drnext = DRNULL;

q->drnext = drptr;

return(DONQ);

}

-- --

Sec. 16.3 Enqueuing Disk Requests 303

Dskenq first examines the request list to see if it is empty because an empty list means
that the device is idle. If the list is empty, it adds the new request and sends a message to
restart the lower-half server process. Otherwise, it searches the existing list.

During the search of the request list, dskenq keeps two pointers, p and q, because the
list is singly linked. As the search proceeds, p and q always point to adjacent nodes; ini-
tially, q points to the first node; p points to the node beyond that (or is empty if the list
contains one node). Ignore for the moment the first ‘‘if’’ statement in the loop, and con-
sider only the second one. If the request specifies a disk block that lies between the
blocks specified in the requests given by p and q, the new request is inserted between
them in the list. Otherwise, p and q move down the list. Testing whether the new request
lies between two existing requests is done with four comparisons because adjacent blocks
on the list may be in either ascending or descending order. Look carefully at the com-
parisons − dskenq takes care to ensure that multiple requests for the same block are han-
dled in FIFO order; overlooking this detail can lead to totally unexpected results.

16.4 Optimizing The Request Queue

Because disk operations take much longer than CPU operations, the driver has been
constructed to minimize arm movement. In special cases, further optimization is possi-
ble. Consider the situation in which a process attempts to read a block for which there is
a pending write request already in the queue. The driver can copy the data from the
buffer associated with the write request into the buffer associated with the read request
and allow the reading process to continue. Another special case occurs when a second
write request arrives for a given block before an existing request has been serviced (the
driver can discard the first request).

To handle these special cases, dskenq uses procedure dskqopt as shown below.
Look again at the loop in dskenq to see how dskqopt is called whenever the request being
inserted in the list specifies a block number identical to one already in the list. If the
‘‘optimization’’ succeeds, dskenq returns to its caller. Otherwise, dskenq continues the
usual insertion algorithm.

-- --

304 A Disk Driver Chap. 16

/* dskqopt.c - dskqopt */

#include <conf.h>

#include <kernel.h>

#include <disk.h>

/*--

* dskqopt -- optimize requests to read/write/seek to the same block

*--

*/

dskqopt(p, q, drptr)

struct dreq *p, *q, *drptr;

{
char *to, *from;

int i;

DBADDR block;

/* By definition, sync requests cannot be optimized. Also, */

/* cannot optimize read requests if already reading. */

if (drptr->drop==DSYNC | | (drptr->drop==DREAD && p->drop==DREAD))

return(SYSERR);

if (drptr->drop == DSEEK) { /* ignore extraneous seeks */

freebuf(drptr);

return(OK);

}

if (p->drop == DSEEK) { /* replace existing seeks */

drptr->drnext = p->drnext;

q->drnext = drptr;

freebuf(p);

return(OK);

}

if (p->drop==DWRITE && drptr->drop==DWRITE) { /* dup write */

drptr->drnext = p->drnext;

q->drnext = drptr;

freebuf(p->drbuff);

freebuf(p);

return(OK);

}

if (drptr->drop==DREAD && p->drop==DWRITE) { /* satisfy read */

-- --

Sec. 16.4 Optimizing The Request Queue 305

to = drptr->drbuff;

from = p->drbuff;

for (i=0 ; i<DBUFSIZ ; i++)

*to++ = *from++;

return(OK);

}

if (drptr->drop==DWRITE && p->drop==DREAD) { /* sat. old read*/

block = drptr->drdba;

from = drptr->drbuff;

for (; p!=DRNULL && p->drdba==block ; p=p->drnext) {
q->drnext = p->drnext;

to = p->drbuff;

for (i=0 ; i<DBUFSIZ ; i++)

*to++ = *from++;

p->drstat = OK;

ready(p->drpid);

}
drptr->drnext = p;

q->drnext = drptr;

resched();

return(OK);

}
return(SYSERR);

}

16.5 Driver Initialization

Although the driver initialization is designed after the other parts, we have chosen to
examine it now, because it also accesses the hardware directly. At startup, the system
calls init for each disk device; init uses the device switch table to transfer control to the
corresponding driver routine dsinit. Procedure dsinit fills in the disk control block and
tests the disk.

-- --

306 A Disk Driver Chap. 16

/* dsinit.c - dsinit */

#include <conf.h>

#include <kernel.h>

#include <disk.h>

#include <mark.h>

#include <bufpool.h>

#include <dskio.h>

#ifdef Ndsk

struct dsblk dstab[Ndsk];

#endif

int dskdbp, dskrbp;

/*--

* dsinit -- initialize disk drive device

*--

*/

int dsinit(devptr)

struct devsw *devptr;

{
struct dsblk *dsptr;

int pid;

char cp[8];

int dsinter();

int i;

int err;

i = devptr->dvminor;

devptr->dvioblk = (char *)(dsptr = &dstab[i]);

dsptr->dsprocnum = -1; /* impossible process # for now */

dsptr->dreqlst = DRNULL;

dsptr->dnum = devptr->dvnum;

dsptr->dnfiles = 0;

if ((dsptr->ddir=(struct dir *)getbuf(dskdbp))==(struct dir *)NULL)

return(SYSERR);

if ((err=dread(dsptr->ddir,i,0)) != 0) {
kprintf("Disk read error %02xH reading drive %d\n",err,i);

freebuf(dsptr->ddir);

dsptr->ddir = (struct dir *) NULL;

return(SYSERR);

}
dsptr->dibsem = screate(1);

-- --

Sec. 16.5 Driver Initialization 307

dsptr->dflsem = screate(1);

dsptr->ddirsem = screate(1);

strcpy(cp,"*DISK *");

cp[5] = ’0’+i;

pid = create(dsinter,INITSTK,DSPRIO,cp,2,dsptr,i);

dsptr->dsprocnum = pid;

ready(pid);

return(OK);

}

Following the same conventions used by other drivers, dsinit assumes it will be called
once, before other operations are attempted.

Initialization is surprisingly simple. It consists of allocating a buffer to hold block 0
and three semaphores. The file system software uses the buffer and semaphores; they are
not part of the driver. To test the disk hardware, dsinit reads block 0 into memory using a
call to the BIOS disk read routine dread. (The file system uses block 0 as a directory.) If
this call is unsuccessful, the initialization terminates; such a condition usually indicates
that there is no disk in the specified drive.

16.6 The Upper-Half Read Routine

Having defined the request list and driver initialization routines, we are ready to
design the upper-half routines that implement the operations read, write, and seek; we be-
gin with read. Basically, the upper-half input routine must build a request node, insert
the request in the list of pending requests, and wait until the lower-half routine indicates
that the request has been honored. The code consists of procedure dsread, shown below
in file dsread.c.

-- --

308 A Disk Driver Chap. 16

/* dsread.c - dsread */

#include <conf.h>

#include <kernel.h>

#include <proc.h>

#include <disk.h>

#include <mark.h>

#include <bufpool.h>

/*--

* dsread -- read a block from a disk device

*--

*/

dsread(devptr, buff, block)

struct devsw *devptr;

char *buff;

DBADDR block;

{
struct dsblk *dsptr;

struct dreq *drptr;

int stat;

int ps;

dsptr = (struct dsblk *)devptr->dvioblk;

if (block<0 | | block>=NDSECT

| | dsptr->dsprocnum < 0

| | (drptr=(struct dreq *) getbuf(dskrbp)) == DRNULL)

return(SYSERR);

disable(ps);

drptr->drdba = block;

drptr->drpid = currpid;

drptr->drbuff = buff;

drptr->drop = DREAD;

if ((stat=dskenq(drptr, devptr->dvioblk)) == DONQ) {
suspend(currpid);

stat = drptr->drstat;

}
freebuf(drptr);

restore(ps);

return(stat);

}

-- --

Sec. 16.6 The Upper-Half Read Routine 309

Dsread allocates a request node from the buffer pool that contains all request nodes
and then fills in the desired disk block address; memory buffer address; and the operation
requested, ‘‘read.’’ Once the request has been specified, dsread calls dskenq to enqueue
the new request in the list of pending requests and to start the server process if necessary.
After the request has been enqueued, dsread suspends the calling process until the opera-
tion completes and the lower-half resumes it. When resumed by the lower-half, the
upper-half deallocates the request block, extracts the exit status value left by the lower-
half, and returns to its caller to indicate whether an error occurred.

It may seem odd that the driver is designed to allocate storage for request nodes
from a single, global buffer pool (dskrbp). Keeping buffers in a single pool instead of di-
viding them among disk devices has benefits and liabilities. For example, the single
buffer pool reduces the chance that a process will be blocked waiting for a request node,
but it allows activity on one disk to prevent activity on another. The exercises consider
other ways in which keeping a separate set of request nodes for each disk device affect
the behavior of the system.

16.7 The Upper-Half Write Routine

The upper-half output driver behaves quite differently from the upper-half input
driver. Instead of waiting for a request to be honored, the output driver allocates and fills
in a request node, enqueues it in the list of pending requests, and returns to its caller
without waiting for the request to be honored. By doing so, it assumes that the data has
been placed in a buffer, and that the caller will not change the buffer between the time it
calls write and the time the data is written.

Returning to the caller before data has been written is a violation of the general prin-
ciples for input and output laid down in Chapter 9. There, we said that the system should
block processes until output has been consumed. Earlier drivers adhered to this principle
either by copying data into an internal buffer or by suspending the process until the data
had been written. Besides violating the general design guidelines and introducing incon-
sistency, arranging for the driver to return before the data has been written is dangerous,
because it leaves programmers susceptible to an error that is easy to make but difficult to
diagnose. After a call to write, only the address of the buffer has been recorded; if the
program continues to change the data, changes made between the call to write and the
time the lower-half copies the data to disk will appear in the copy on disk.

If non-blocking output is so dangerous, why design the disk driver to use it? The
answer is that the current design is a compromise. Suspending the caller until the opera-
tion completes will not work because disk operations are so slow that processes using
disks would spend most of their time suspended. The upper-half could avoid waiting if it
copied data into a buffer itself. An earlier version of the upper-half output routine did
just that − it allocated a buffer and copied the data from the caller’s area into the buffer
before returning. It turned out, however, that the CPU spent most of its time copying
data from one buffer to another. Closer examination of the code in the next layer of the
file system revealed that routines calling the output driver usually deallocated the buffer

-- --

310 A Disk Driver Chap. 16

immediately after writing data, so the driver was copying data from one system buffer to
another needlessly. To avoid wasting time, the driver was changed to write directly from
the specified address, leaving the responsibility of buffering to the upper layers of file
system software.

Is there a better alternative to driver optimization? If users were expected to call the
driver routines directly, nonblocking output routines would be unacceptable. As we will
see in the next chapter, only PC-Xinu file system routines call the disk driver, so we can
be careful to ensure that they buffer output before calling the driver. In a system
designed to support calls from both user programs and file system routines, the problem
can be solved by building two upper-level interfaces for the disk driver. One interface,
called only by other system routines, would provide unbuffered output like the current
driver; the other, called by user programs, would copy data into buffers before returning
to the caller.

16.8 Implementation Of The Upper-Half Write Routine

Procedure dswrite, found in file dswrite.c, implements the upper-half output routine
described above.

/* dswrite.c - dswrite */

#include <conf.h>

#include <kernel.h>

#include <proc.h>

#include <disk.h>

#include <mark.h>

#include <bufpool.h>

/*--

* dswrite -- write a block (system buffer) onto a disk device

*--

*/

dswrite(devptr, buff, block)

struct devsw *devptr;

char *buff;

DBADDR block;

{
struct dsblk *dsptr;

struct dreq *drptr;

int ps;

dsptr = (struct dsblk *)devptr->dvioblk;

if (block<0 | | block>=NDSECT

-- --

Sec. 16.8 Implementation Of The Upper-Half Write Routine 311

| | dsptr->dsprocnum < 0

| | (drptr=(struct dreq *) getbuf(dskrbp)) == DRNULL)

return(SYSERR);

disable(ps);

drptr->drbuff = buff;

drptr->drdba = block;

drptr->drpid = currpid;

drptr->drop = DWRITE;

if (dskenq(drptr, devptr->dvioblk) == SYSERR) {
freebuf(drptr);

restore(ps);

return(SYSERR);

}
restore(ps);

return(OK);

}

Like the input routine, dswrite is straightforward. It allocates a request node from global
buffer pools dskrbp, fills in the request block, and calls dskenq to add it to the list of re-
quests.

16.9 The Upper-Half Seek Routine

The third upper-half routine, dsseek, implements the seek operation:

-- --

312 A Disk Driver Chap. 16

/* dsseek.c - dsseek */

#include <conf.h>

#include <kernel.h>

#include <proc.h>

#include <disk.h>

#include <mark.h>

#include <bufpool.h>

/*--

* dsseek -- schedule a request to move the disk arm

*--

*/

dsseek(devptr, block)

struct devsw *devptr;

DBADDR block;

{
struct dsblk *dsptr;

struct dreq *drptr;

int ps;

dsptr = (struct dsblk *)devptr->dvioblk;

if (block<0 | | block>=NDSECT

| | dsptr->dsprocnum < 0

| | (drptr=(struct dreq *) getbuf(dskrbp)) == DRNULL)

return(SYSERR);

disable(ps);

drptr->drdba = block;

drptr->drpid = currpid;

drptr->drbuff = NULL;

drptr->drop = DSEEK;

/* enqueued with normal policy like other read/write requests */

dskenq(drptr, devptr->dvioblk);

restore(ps);

return(OK);

}

Dsseek operates much like dswrite. It allocates a request block, fills in the operation and
block address fields, and calls dskenq to enqueue the request in the list of pending re-
quests. Like dswrite, dsseek returns to its caller as soon as the request has been en-
queued, without waiting for the operation to complete. Observe that the BIOS software
interface does not provide a seek operation, so seek requests end up being ignored in PC-
Xinu.

-- --

Sec. 16.10 The Lower-Half Of The Disk Driver 313

16.10 The Lower-Half Of The Disk Driver

The lower-half of the disk driver is implemented as a process. Like the tty input and
output processes described in Chapter 12, the lower-half disk driver performs an infinite
loop, examining the request queue and carrying out the specified operations as long as re-
quests remain in the queue. When the queue becomes empty, the process suspends itself
by waiting for a message with a call to receive. Upper-half routines call dskenq to en-
queue requests, and dskenq sends a message to the lower-half process if it finds the queue
empty.

Procedure dsinter implements the lower-half.

-- --

314 A Disk Driver Chap. 16

/* dsinter.c - dsinter */

#include <conf.h>

#include <kernel.h>

#include <disk.h>

#include <dskio.h>

/*--

* dsinter -- process to handle disk requests

*--

*/

PROCESS dsinter(dsptr,dsknum)

struct dsblk *dsptr;

int dsknum;

{
int ps;

struct dreq *drptr;

int status;

disable(ps);

for(;;) {
drptr = dsptr->dreqlst;

if (drptr == DRNULL) {
receive();

continue;

}
dsptr->dreqlst = drptr->drnext;

switch (drptr->drop) {
case DREAD:

status = dread(drptr->drbuff,dsknum,drptr->drdba);

if (status != 0)

kprintf("\nRead error: cde=%02xH drv=%d blk=%d\n",

status,dsknum,drptr->drdba);

drptr->drstat = (status ? SYSERR : OK);

case DSYNC:

if (resume(drptr->drpid) == SYSERR)

panic("Disk request block pid error");

break;

case DWRITE:

status=dwrite(drptr->drbuff,dsknum,drptr->drdba);

if (status != 0)

kprintf("\nWrite error: cde=%02xH drv=%d blk=%d\n",

status,dsknum,drptr->drdba);

freebuf(drptr->drbuff);

-- --

Sec. 16.10 The Lower-Half Of The Disk Driver 315

/* fall through */

case DSEEK:

freebuf(drptr);

}
}

}

Depending on the operation just completed, dsinter resumes the calling process or deallo-
cates the request node. If the operation was a read, it resumes the process that requested
input and returns. If the operation was a write or seek, dsinter deallocates the request
node by calling freebuf; in the case of a write it deallocates the data buffer as well, be-
cause the process that initiated the operation has already returned from the upper-half
routines. Seek operations are simply dequeued and disposed of.

16.11 Flushing Pending Requests

Because dswrite does not wait for data transfer, a process cannot know when blocks
have been written to disk. However, making sure that blocks have been written may be
important. For example, the system may want to ensure that activity on all disk devices
completes before shutdown.

To allow programs in higher layers to check that all disk transfers have occurred,
the driver includes a primitive that will block the calling process until all existing re-
quests have been performed. Because ‘‘synchronizing’’ the disk is not a data transfer
operation, we will use the high-level operation control. To flush pending requests, a pro-
cess calls

control (device, DSKSYNC)

The driver suspends the caller until all existing requests have been satisfied on the speci-
fied device; then, the call returns.

Procedure dscntl implements the upper-half control function.

-- --

316 A Disk Driver Chap. 16

/* dscntl.c - dscntl */

#include <conf.h>

#include <kernel.h>

#include <proc.h>

#include <disk.h>

/*--

* dscntl -- control disk driver/device

*--

*/

dscntl(devptr, func, arg1, arg2)

struct devsw *devptr;

int func;

char *arg1, *arg2;

{
int stat;

int ps;

disable(ps);

switch (func) {

case DSKSYNC:

stat = dsksync(devptr);

break;

default:

stat = SYSERR;

break;

}
restore(ps);

return(stat);

}

Synchronization is specified with an argument given by symbolic constant DSKSYNC.
Dscntl invokes procedure dsksync to synchronize the disk; its definition can be found in
file dsksync.c.

/* dsksync.c - dsksync */

#include <conf.h>

#include <kernel.h>

#include <proc.h>

#include <disk.h>

-- --

Sec. 16.11 Flushing Pending Requests 317

#include <mark.h>

#include <bufpool.h>

/*--

* dsksync -- wait for all outstanding disk requests before returning

*--

*/

dsksync(devptr)

struct devsw *devptr;

{
struct dsblk *dsptr;

struct dreq *drptr, *p, *q;

int stat;

dsptr = (struct dsblk *)devptr->dvioblk;

if (dsptr->dsprocnum < 0)

return(SYSERR);

if ((q=dsptr->dreqlst) == DRNULL)

return(OK);

if ((drptr=(struct dreq *) getbuf(dskrbp)) == DRNULL)

return(SYSERR);

drptr->drdba = 0;

drptr->drpid = currpid;

drptr->drbuff = NULL;

drptr->drop = DSYNC;

drptr->drnext = DRNULL;

/* place at end of request list */

for (p=q->drnext ; p!=DRNULL ; q=p,p=p->drnext)

;

q->drnext = drptr;

drptr->drstat = SYSERR;

suspend(currpid);

stat = drptr->drstat;

freebuf(drptr);

return(stat);

}

Like the other upper-half drivers, dsksync allocates a request node and fills it. Unlike the
other drivers it does not use dskenq to insert the request in the list. Instead, it searches
the list using pointers p and q and inserts the request when q points to the last node. Be-
cause the block specified is 0, the request is guaranteed to go at the end of the list (the ex-
ercises discuss one of the shortcomings of this implementation). To avoid making syn-

-- --

318 A Disk Driver Chap. 16

chronization a special case, dsksync requests an operation that tests the disk status. When
the request reaches the front of the list, the driver passes it to the lower-half server pro-
cess exactly as it does for other operations.

When the ‘‘sync’’ operation completes, the lower-half awakens the process execut-
ing dsksync just as it awakens the process executing dsread when a read operation com-
pletes. After being awakened, the process that suspended itself returns to dscntl and from
there to its caller.

16.12 Summary

This chapter considers the design of a low-level disk driver that implements read,
write, seek, and control operations. At this level, the disk is viewed as a large array of
randomly accessible data blocks; there is no notion of named files, directories, or the in-
dex techniques used to speed searching. Reading consists of copying data from a speci-
fied block on disk into memory; writing consists of copying data from memory onto a
specified disk block. Whenever an operation completes, the lower-half process takes the
next pending request from the queue, and performs that operation.

The driver reduces the time required to honor requests by reordering them to minim-
ize disk arm movement. When enqueuing a request, upper-half routines insert it between
two adjacent existing requests if the arm will pass over the requested block while travel-
ing from one block to the other. Otherwise, it adds the request to the end of the list.
While this heuristic does not guarantee minimum access time for a set of requests, it
works well in practice.

Because copying data for each transfer requires too much CPU time, the disk driver
has been designed to accept output requests, and return to the caller without copying the
data into system buffers. This strategy can be dangerous because it places all responsibil-
ity for buffering on the caller. Although unbuffered output forms an efficient foundation
for file system routines, it should be rewritten before being used as a general-purpose
disk interface.

FOR FURTHER STUDY

The treatment of disk scheduling heuristics in Denning [1967] compares First-
Come-First-Served (FCFS) and Shortest-Seek-Time-First (SSTF) along with a heuristic
similar to the one described here. Teorey [1972], Wilhelm [1976], and Hofri [1980]
compare FCFS with SSTF, giving an in-depth analysis.

-- --

Exercises 319

EXERCISES

16.1 Build a synchronous output driver that waits for I/O to complete before returning to the
calling process.

16.2 The upper-half tries to minimize the amount of disk arm movement by keeping the list of
requests ordered by block number. Show that the algorithm is not optimum by finding a
sequence of requests for which the algorithm produces a list that requires more arm move-
ment than necessary. What is the worst possible sequence of requests that can be present-
ed to this algorithm?

16.3 Should requests from high-priority processes take precedence over requests from low-
priority processes?

16.4 Verify that the driver honors all requests for a given block in FIFO order.

16.5 Investigate other algorithms like the ‘‘elevator’’ algorithm (mentioned in Knuth [1968])
that are used to order disk requests.

16.6 Verify that a request to ‘‘synchronize’’ will not return until all pending requests have been
satisfied. Is there a bound on the time it can be delayed by new requests?

16.7 Describe a sequence of operations in which a call to dssync does not return even though all
requests that were pending when it was inserted have completed. Redesign the synchroni-
zation routine to allow the caller to wait for a specific request.

16.8 While read failures can be recognized by the caller by inspecting the drstat component of
the request buffer upon return, write failures cannot. Investigate ways in which the caller
can be informed if a write failure occurs.

16.9 Change the lower-half driver software to be interrupt-driven by accessing the PC disk con-
troller hardware directly.

