
10

Real-Time Clock
Management

A clock is a hardware device that emits pulses, usually square waves, at regular in-
tervals with high precision. Besides the central system clock that controls the rate at
which the CPU executes instructions, computer systems may have a real-time clock and a
time-of-day clock, the two being related, but not identical.

Like a digital wristwatch, a time-of-day clock is a chronometer. It consists of an ac-
curate clock that pulses an integral number of times per second and a counter to tally the
pulses. Programs read the counter to determine the current time and date, and privileged
programs write into the counter to set the time. Resetting is rarely needed because time-
of-day clocks continue counting correctly as long as they receive power, independent of
whether the CPU is heavily loaded or halted. (Stories abound about the confusion intro-
duced by computer operators who set the time-of-day clock inaccurately after a power
failure.)

10.1 The Real-Time Clock Mechanism

Unlike the time-of-day clock, a real-time clock does not tally pulses or keep track of
the date. Instead, it pulses regularly a number of times each second, signaling the CPU
each time a pulse occurs, by posting an interrupt. Thus, one distinction between the two
clocks is based on whether the clock controls the CPU or the CPU controls the clock:

The CPU reads the time-of-day clock whenever it wants to obtain the
current date and time; the real-time clock forces the CPU to process an
interrupt each time it pulses.

149

-- --

150 Real-Time Clock Management Chap. 10

The two clocks are further distinguished by whether they count pulses. The real-time
clock does not contain a counter, and it does not accumulate interrupts. Responsibility
for counting interrupts falls on the system:

If the CPU takes too long to service a real-time clock interrupt, or if it
operates with interrupts disabled for more than one clock cycle, it will
miss the interrupt.

Obviously, systems must be designed to service clock interrupts quickly. The hardware
helps by giving highest priority to clock interrupts. Some clock hardware buffer a few
interrupts allowing the CPU to delay more than one cycle. Even so, some slow proces-
sors cannot afford to call a C procedure on each clock interrupt, or they would spend
most of their time handling clock interrupts.

10.2 PC Real-Time Clock Interrupts

The typical PC processor clock operates at 4.77272MHz. Circuitry on the processor
board divides the rate by 4, producing a 1.19318MHz signal for the 8253 timer chip. The
timer chip, in turn, divides the signal by 65536 to produce a rate of 18.20648Hz, the rate
of the real time clock interrupt. The clock interrupts through vector CLK_INT (type 08H)
and is dispatched through the intmap table described in Chapter 9.

Certain systems have a faster real-time clock − that is, a more frequent interrupt
rate. Such systems cannot afford to call a C procedure on each clock interrupt, or they
would spend most of their time handling clock interrupts. How can such a system avoid
spending all its time processing real-time clock interrupts? The answer is that the clock
rate must be adjusted to match the system. Slowing the clock is a significant optimiza-
tion because it permits the designer to build rich functionality by sacrificing some preci-
sion.

Ideally, the hardware clock should be slowed, but this is usually inconvenient or im-
possible. Instead, a special-purpose clock interrupt handler can be designed to simulate a
slower-rate clock. The easiest way to simulate a slow clock consists of dividing the
clock rate. For example, the real-time clock on the Digital Equipment Corporation LSI
11/2 − the original processor Xinu was designed for − generates 60 pulses per second, a
rate that would require much time to handle. To simulate a slower clock, the clock
handler can be programmed to ignore five clock interrupts before processing one, effec-
tively dividing the rate by 6. In practice, the clock handler must accept all clock inter-
rupts, but it merely decrements a counter and returns quickly on five out of six. As a
result, the main body of the LSI 11/2 clock interrupt handling code is executed only 10
times per second.

The rate at which the main clock interrupt handling is performed is affectionately
known as the tick rate, and we say a tick occurs each time this main clock interrupt
handler is called. In PC-Xinu, the main clock interrupt code is performed on each clock
interrupt, so its tick rate is the same as the real-time clock interrupt rate − approximately

-- --

Sec. 10.2 PC Real-Time Clock Interrupts 151

18.2Hz. While this rate is slow enough to avoid a significant interrupt-handling over-
head, the rate is an unfortunate choice since it is not an integral number of ticks per
second. This rate makes it difficult to handle activities which require a resolution meas-
ured in seconds or multiples of seconds.

10.3 The Use Of A Real-Time Clock

Operating systems use real-time clocks internally to limit the amount of time a pro-
cess can execute, as well as externally, to provide user programs with services like timed
delays. Usually, the system maintains a list of ‘‘events,’’ ordered by the time at which
they should occur. Whenever the real-time clock interrupts, it examines the event list
and initiates any events for which the delay has expired.

Our design allows two kinds of events to be scheduled for the future. The first is
preemption: when granting CPU service to a process, the system schedules a preemption
event to prevent the process from running forever. The second is a timed delay: when a
process requests a timed delay, it removes the process from the current state and
schedules a wakeup event to restart it at the correct time.

The system uses preemption to guarantee that equal priority processes receive ser-
vice round-robin (specified by the scheduling policy in Chapter 4). Recall that whenever
resched switches context, it resets the variable preempt to QUANTUM (QUANTUM is a
symbolic constant defined in file kernel.h). The clock interrupt dispatcher decrements
preempt on each clock tick, calling resched when it reaches zero. The currently execut-
ing process is always the highest priority process that is eligible for CPU service, but oth-
ers of equal priority may be waiting on the ready list. If they are, resched places the
current process on the ready list behind other processes with equal priority, and it and
switches to the first process on the list. Thus, if k equal-priority processes all need CPU
service, all k execute for, at most, QUANTUM clock ticks before any of them receive
more service.

The value of symbolic constant QUANTUM gives the granularity of preemption; it
can be changed before the system is compiled. Setting QUANTUM small, say 2 or 3,
makes the granularity small, by rescheduling every few tenths of a second. Small granu-
larity tends to keep all equal priority processes proceeding at approximately the same
pace. But a small granularity introduces much overhead because it forces the clock inter-
rupt routine to call resched often. Setting QUANTUM to a large value, say 100, reduces
the overhead of context switching, but makes the granularity of switching large. The po-
tential disadvantage of large granularity is that a process may execute many seconds be-
fore switching to another of equal priority.

As it turns out, processes seldom use the CPU long enough to warrant preemption.
A process voluntarily calls resched by executing system routines like wait or doing input
and output (I/O). Because input and output are slow compared to processing, processes
spend most of their time waiting for devices. However, the system could never regain
control from a process that executed an infinite loop without a preemptive capability, so
it is important to include it in any system that supports multiprogramming.

-- --

152 Real-Time Clock Management Chap. 10

Systems also use the real-time clock to honor requests for timed delays. For exam-
ple, when the currently executing process requests a delay, PC-Xinu moves it to a list of
‘‘sleeping’’ processes, arranging to have it awakened after the appropriate number of
clock ticks. On each clock tick, the clock interrupt routine checks sleeping processes and
moves those that have been delayed the specified time to the ready list. Routines to han-
dle such delays will be considered next.

10.4 Delta List Processing

Because it cannot afford to search through arbitrarily long lists of sleeping processes
to find those that should awaken on each clock tick, the system keeps sleeping processes
in a data structure called a delta list. Like other lists of processes, the sleeping process
delta list resides in the q structure. Variable clockq contains the q index of its head. On
each clock tick, the clock interrupt dispatcher examines the first process in clockq and
calls the high-level interrupt routine wakeup to awaken processes if their time delay has
expired.

Unlike other lists in the q structure, the delta list is neither ordered by increasing
key, nor FIFO. Instead, keys record successive deltas (differences) in delay:

Processes on clockq are ordered by the time at which they will awaken;
each key tells the number of clock ticks that the process must delay
beyond the preceding one on the list.

The first process on the list is the one with least delay, and its key gives the remaining
delay in clock ticks until it must awaken. The delta organization permits the clock inter-
rupt routine to decrement the first key on each clock tick without scanning the list be-
cause the remaining delays are relative to it. For example, if four processes need to delay
17, 27, 28, and 32 ticks, then their keys on the delta list contain 17, 10, 1, and 4. Given
only the delta list, partial sums of keys give the total delay before processes awaken. The
total delay before the first process awakens is 17, the total for the second is 17+10, the to-
tal for the third is 17+10+1, and the total for the last is 17+10+1+4.

Routines to manipulate delta lists are easy to design, but the details can be tricky;
close scrutiny of the code is worthwhile. Procedure insertd, shown below, inserts a pro-
cess pid in clockq, given its delay in parameter key. As with priority queues, the qkey
field of each node on the list records the key value for that node. In the code, variable
next scans the list searching for the place to insert the new process.

Keys in the delta list specify delays relative to their predecessor; they cannot be
compared directly to the initial value of key, which specifies a delay relative to the
current time. To keep the delays comparable, insertd subtracts the relative delays from
key as the search proceeds, maintaining the following invariant:

-- --

Sec. 10.4 Delta List Processing 153

At any time during the search, both key and q[next].qkey specify a de-
lay relative to the time at which the predecessor of the ‘‘next’’ awak-
ens.

Insertd inserts the new process at the point where its relative delay is less than the rela-
tive delay of those left on the list. Note that insertd does not have to explicitly check for
the end of the list, because the key value in the tail forces an insertion. After linking pro-
cess pid into the list, insertd subtracts the extra delay that it introduces from the delay of
the next process.

/* insertd.c - insertd */

#include <conf.h>

#include <kernel.h>

#include <q.h>

/*--

* insertd -- insert process pid in delta list "head", given its key

*--

*/

INTPROC insertd(pid, head, key)

int pid;

int head;

int key;

{
int next; /* runs through list */

int prev; /* follows next through list */

for(prev=head,next=q[head].qnext ;

q[next].qkey < key ; prev=next,next=q[next].qnext)

key -= q[next].qkey;

q[pid].qnext = next;

q[pid].qprev = prev;

q[pid].qkey = key;

q[prev].qnext = pid;

q[next].qprev = pid;

if (next < NPROC)

q[next].qkey -= key;

return(OK);

}

-- --

154 Real-Time Clock Management Chap. 10

10.5 Putting A Process To Sleep

User programs do not usually access the real-time clock queue directly; they call
system routines that provide delays. System call sleept(n) delays the calling process n
ticks. It does so by inserting the process into the delta list of sleeping processes.

When a process is moved to the list of sleeping processes, it is no longer ready or
current. In what state should it be placed? Sleeping processes differ from processes that
are suspended, waiting to receive messages, or waiting for semaphores, so none of these
states suffices. It is time to add a new process state to the design; we will call it sleeping
and denote it with symbolic constant PRSLEEP. The new diagram of process state tran-
sitions is shown in Figure 10.1.

READY CURRENT

resched

resched

SUSPENDED
suspendresume

suspend

create

WAITING
waitsignal

RECEIVING
receivesend

SLEEPING
sleepwakeup

Figure 10.1 The process state transition diagram for the ’sleep’ state

-- --

Sec. 10.5 Putting A Process To Sleep 155

The implementation of sleept is straightforward. As shown below, it uses insertd to
move the current process to the sleeping process list, changes its state to sleeping, and
then calls resched to allow other processes to execute.

/* sleept.c - sleept */

#include <conf.h>

#include <kernel.h>

#include <proc.h>

#include <q.h>

#include <sleep.h>

/*--

* sleept -- delay the caller for a time specified in system ticks

*--

*/

SYSCALL sleept(n)

int n;

{
int ps;

if (n<0)

return(SYSERR);

if (n == 0)

return(OK);

disable(ps);

insertd(currpid,clockq,n);

slnempty = TRUE;

sltop = & q[q[clockq].qnext].qkey;

proctab[currpid].pstate = PRSLEEP;

resched();

restore(ps);

return(OK);

}

Sleept references three external variables defined in file sleep.h (below): clockq, sltop,
and slnempty. Clockq contains the q index of the list of sleeping processes.

-- --

156 Real-Time Clock Management Chap. 10

/* sleep.h */

extern int clockq; /* q index of sleeping process list */

extern int *sltop; /* address of first key on clockq */

extern int slnempty; /* 1 iff clockq is nonempty */

extern long tod; /* time of day (ticks since startup) */

extern int defclk; /* >0 iff clock interrupts are deferred */

extern int clkdiff; /* number of clock ticks deferred */

#define TICSN 19663 /* no. of ticks per 1080 seconds */

#define TICSD 1080

Even though the tick rate for PC-Xinu is relatively slow, processing clock interrupts
is expensive. Variables sltop and slnempty help optimize interrupt processing by making
it easy to determine whether sleeping processes should be awakened. Slnempty tells
whether the list clockq is currently nonempty. If any processes remain on clockq, sltop
gives the address of the key in the first one. The interrupt routine completely skips the
code for sleeping processes when slnempty is zero, and it uses sltop to quickly locate the
delta-key of the first sleeping process when slnempty is nonzero.

10.6 Delays Measured In Seconds

The size of an integer, 16 bits, limits the delay allowed by sleept to 215 − 1 ticks,
which is about 1800 seconds, or 30 minutes. System call sleep provides a way for
processes to delay up to 9 hours because its argument specifies a delay measured in
seconds rather than ticks. Sleep uses sleept repeatedly to schedule shorter delays until the
total delay time has elapsed.

/* sleep.c - sleep */

#include <conf.h>

#include <kernel.h>

#include <sleep.h>

/*--

* sleep -- delay the calling process n seconds

*--

*/

SYSCALL sleep(n)

int n;

{
int ps;

-- --

Sec. 10.6 Delays Measured In Seconds 157

if (n<0)

return(SYSERR);

if (n == 0) {
disable(ps);

resched();

restore(ps);

return(OK);

}
while (n >= TICSD) {

sleept(TICSN);

n -= TICSD;

}
if (n > 0)

sleept((int)(((long)n*(long)TICSN) / (long)TICSD));

return(OK);

}

The numbers TICSN and TICSD (having values 19663 and 1080 respectively) de-
fined in sleep.h deserve special comment. It turns out that the quotient TICSN/TICSD
very closely approximates the tick rate, with an error of about 25 parts per billion. Put
another way, TICSN ticks equals TICSD seconds. When scheduling a timed delay in
seconds, delays exceeding TICSD seconds can be scheduled as (possibly repeated) delays
of TICSN ticks using sleept. When the remaining delay in seconds is less than TICSD, it
is used to determine how many ticks should be scheduled as a fraction of TICSN to
achieve the required delay in seconds. For example, if n is the number of seconds to de-
lay, the quotient

n*TICSN/TICSD

will be the number of ticks to schedule for sleept. Observe that the multiplication
n*TICSN should be done before dividing by TICSD to avoid integer round-off errors. In
view of the magnitudes of these numbers, this product must be carried out using long in-
teger arithmetic.

Notice that a request for a delay of one second will mean scheduling a delay of ex-
actly 18 ticks and will result in an actual delay of approximately 0.988659 seconds, giv-
ing an error of about 1.1341 percent. These errors can accumulate when such delays are
scheduled repeatedly over long periods of time. Also observe that sleep is designed to
cause an immediate reschedule if the sleep time is zero. Since resched cannot be called
with interrupts enabled, this feature provides a simple way for a process to reschedule it-
self.

-- --

158 Real-Time Clock Management Chap. 10

10.7 Clock Interrupt Processing

The intcom interrupt dispatcher calls the clock interrupt service routine clkint on
each clock tick. Because it has been called from an interrupt dispatcher, clkint assumes
that interrupts have been disabled upon entry; the keyword INTPROC reminds the reader
of this assumption. The parameter to clkint is a dummy parameter passed automatically
by intcom. Clkint first increments the global time-of-day value tod, which counts the
number of ticks since system startup. If deferred clock processing is in effect, clkdiff is
incremented and clkint returns immediately.

If the list of sleeping processes is not empty, clkint decrements the first key on
clockq, and if the delay has reached zero, wakeup is called to wake up processes whose
delay time has elapsed. Note how slnempty and sltop eliminate the computation of sub-
scripts at interrupt time. Finally, the preemption counter is decremented which will result
in rescheduling the current process if its time slice has expired.

/* clkint.c - clkint */

#include <conf.h>

#include <kernel.h>

#include <sleep.h>

#include <io.h>

/*--

* clkint -- clock service routine

* called at every clock tick and when starting the deferred clock

*--

*/

INTPROC clkint(mdevno)

int mdevno; /* minor device number */

{
int i;

tod++;

if (defclk) {
clkdiff++;

return;

}
if (slnempty)

if ((--*sltop) <= 0)

wakeup();

if ((--preempt) <= 0)

resched();

}

-- --

Sec. 10.7 Clock Interrupt Processing 159

10.8 Awakening Sleeping Processes

Wakeup makes ready all processes whose delay time has elapsed. The count of the
first key on clockq takes into account any ticks that have accumulated since the last call
to wakeup. Wakeup removes and makes ready the first process from clockq whose delay
time has elapsed, and it propagates any deficiency in accumulated ticks to the next item
in the waiting list. Finally wakeup resets sltop and slnempty to reflect the new queue
status before calling resched, because rescheduling may allow another process to run
(and the clock to interrupt).

/* wakeup.c - wakeup */

#include <conf.h>

#include <kernel.h>

#include <proc.h>

#include <q.h>

#include <sleep.h>

/*--

* wakeup -- called by clock interrupt dispatcher to awaken processes

*--

*/

wakeup()

{
register int makeup; /* makeup for lost time */

register int k; /* key value */

makeup = 0;

while (nonempty(clockq) && (k=firstkey(clockq)) <= makeup) {
makeup -= k;

ready(getfirst(clockq));

}
if (slnempty = nonempty(clockq)) {

sltop = &firstkey(clockq);

*sltop -= makeup;

}
resched();

}

-- --

160 Real-Time Clock Management Chap. 10

10.9 Deferred Clock Processing

The clock dispatcher includes an additional feature that complicates it: deferred
clock processing. In essence, deferred clock mode allows the system to accumulate
clock ticks without initiating events. The difference between ignoring clock interrupts
and deferring them is that the clock handler can schedule events that ‘‘should have oc-
curred’’ when it leaves deferred mode and returns to normal mode. If the clock only
remains deferred for a few ticks at a time, the system will appear to operate normally.

The motivation for deferred clock processing is that the operating system keeps in-
terrupts disabled while it switches context. Disabling interrupts poses no problems when
input comes from a keyboard because humans type slowly compared to the speed at
which computers consume data. But for some computer-to-computer communication,
data is sent and received at a high speed. If a context switch happens when receiving a
block of characters, some of the characters may be lost.

To solve this problem, the I/O system needs to prohibit context switches for short
periods of time even though interrupts remain enabled. Ideally, the system should be
able to ‘‘make up for lost time’’ when context switching is reenabled again. Even though
it is impossible to prevent context switching without changing the system behavior, the
idea is to find a solution that has minimal impact without corrupting the basic design.
Deferred clock processing consists of postponing, but not ignoring, context switches.
During a deferred clock period, context switching is suspended by deferring clock inter-
rupts. When the deferral ends, normal processing resumes.

10.9.1 Procedures For Changing To And From Deferred Mode

A process can place the clock in deferred mode by calling stopclk and return the
clock to real-time mode by calling strtclk. Any number of processes can request that the
clock be deferred − it remains deferred until they have all called strtclk. Stopclk counts
deferral requests by incrementing defclk, and strtclk counts restart requests by decrement-
ing it. As long as defclk remains positive, the interrupt handler counts clock ticks in
clkdiff without processing them.

Strtclk "makes up for lost time" when defclk reaches zero again, by catching up on
all events that should have occurred while the clock remained deferred. To do so, strtclk
updates the preemption counter and subtracts the accumulated ticks from the delay of
sleeping processes, waking up processes whose sleep times have elapsed.

The code for both strtclk and stopclk is contained in file ssclock.c, shown below.

/* ssclock.c - stopclk, strtclk */

#include <conf.h>

#include <kernel.h>

#include <q.h>

#include <sleep.h>

-- --

Sec. 10.9 Deferred Clock Processing 161

/*--

* stopclk -- put the clock in defer mode

*--

*/

stopclk()

{
int ps;

disable(ps);

defclk++;

restore(ps);

}

/*--

* strtclk -- take the clock out of defer mode

*--

*/

strtclk()

{
int ps;

int makeup;

int next;

disable(ps);

if (defclk<=0 | | --defclk>0) {
restore(ps);

return;

}
makeup = clkdiff;

clkdiff = 0;

if (slnempty)

if ((*sltop -= makeup) <= 0)

wakeup();

if ((preempt -= makeup) <= 0)

resched();

restore(ps);

}

10.10 Clock Initialization

Procedure clkinit, shown below, performs the necessary initialization.

-- --

162 Real-Time Clock Management Chap. 10

/* clkinit.c - clkinit */

#include <conf.h>

#include <kernel.h>

#include <q.h>

#include <sleep.h>

/*--

* clkinit -- initialize the clock and sleep queue (called at startup)

*--

*/

clkinit()

{
tod = 0L; /* initial time of day */

preempt = QUANTUM; /* initial time quantum */

slnempty = FALSE; /* initially, no process asleep */

clkdiff = 0; /* zero deferred ticks */

defclk = 0; /* clock is not deferred */

clockq = newqueue(); /* allocate clock queue in q */

}

10.11 Summary

A real-time clock interrupts the CPU at regular intervals. Because the clock inter-
rupts frequently, the interrupt routine must be designed to operate efficiently. The real-
time clock manager uses clock interrupts to schedule events in the future and then to ini-
tiate the events at the appropriate time. A preemption event, scheduled every time the
system switches context, forces a call to the scheduler after QUANTUM clock ticks pass.
Preemption guarantees that no process uses the CPU forever. Wakeup events, scheduled
when user processes request timed delays, cause the running process to enqueue itself on
a list of sleeping processes and pass control to another process. The interrupt handler
awakens sleeping processes when their delay expires by moving them back to the ready
list.

FOR FURTHER STUDY

Because timing and clock processing rely on the hardware available, most books
describe how the operating system uses timed delays without giving much detail about
the clock routines. Examples of the use of clocks in virtual memory management, pro-
cess management (e.g., time slicing), and distributed systems can be found in Calingaert
[1982], Peterson and Silberschatz [1983], and Habermann [1976].

-- --

For Further Study 163

EXERCISES

10.1 The PC does not have a hardware time-of-day clock. Show how to use the variable tod to
simulate a time-of-day clock.

10.2 Program the 8253 timer chip to interrupt at different tick rates. Measure the difference it
makes in the execution of CPU intensive programs.

10.3 Conduct an experiment to determine whether the system ever misses clock interrupts. Be-
fore beginning, estimate the number of instructions executed during an interrupt when a
sleeping process awakens, and the time it will take to execute them.

10.4 Trace the series of calls starting with a clock interrupt that awakens two sleeping
processes, one of which has higher priority than the currently executing process.

10.5 What goes wrong if QUANTUM is set to 1? Hint: consider switching back to a process
that was suspended by resched while processing an interrupt.

10.6 Speculate about the usefulness of deferring clock interrupts. Compare its effect when the
deferral lasts only a few clock ticks to cases where it lasts many seconds.

10.7 Does sleep(3) guarantee a minimum delay of 3 seconds, an exact delay of 3 seconds, or a
maximum delay of 3 seconds?

10.8 Identify a problem in the way that kill removes processes from the queue of sleeping
processes. Rewrite kill to correct the problem.

10.9 What might happen if wakeup called wait?

10.10 Systems that charge processes for CPU time face the following problem: when an inter-
rupt occurs, it is most convenient to let the current process execute the interrupt routine
even if the interrupt has nothing to do with the current process. Investigate how such sys-
tems charge the cost of executing interrupt routines like wakeup to the processes that are
affected.

10.11 Rewrite sleep to avoid the overhead of calling sleept.

10.12 Design an experiment to see if preemption ever causes the system to reschedule. Be care-
ful: awakening a sleeping process to test a variable or using normal output will affect the
results of the experiment by forcing calls to resched.

10.13 Some machines have programmable interval timer hardware. The interval timer is set by
specifying a delay; it interrupts when the delay has completed. Redesign the clock rou-
tines assuming that you have three independent interval timers available.

