
2

An Overview of the Machine
and Run-Time Environment

2.1 The Machine

Operating systems deal with the details of devices, processors, and memory − they
cannot be designed without some notion of a machine. This book uses the IBM PC or its
alternatives, the PC/XT and PC/AT microcomputer systems. We refer to any of them
generically as a ‘‘PC.’’ The PC was chosen because of its popularity and low cost. The
8088/8086/80286 microprocessers used in PCs are sufficiently simple to serve as models
of a general purpose processor and sufficiently complex to illustrate the details of operat-
ing system software.

The remainder of this chapter introduces the PC hardware. From the operating sys-
tem designer’s point of view, the firmware that the vendor supplies with a PC in ROM†
is part of the hardware. From the vendor’s point of view, having services built into
ROM, instead of the underlying hardware, makes it possible to have multiple models of
PCs that use slightly different underlying hardware but which all run programs in the
same way. Therefore, this chapter describes the services supplied by ROM firmware as
well as pertinent features of the processor, memory, and communication devices. It ex-
plains the PC architecture, including processor mechanisms like segment addressing, the
stack, and vectored interrupts, as well as peripheral devices. The discussion focuses on
the Intel 8088, the microprocessor used on the original PC. The 8086 and 80286 proces-
sors that appeared on later models have essentially the same register configuration in-
struction set as the 8088. Although the exact details of the hardware are not important,
the basic ideas are.

� �������������������������������������������������������������
† ROM stands for Read Only Memory. It contains non-volatile code and data which may be read by the

processor but may not be modified.

19



-- --

20 An Overview of the Machine and Run-Time Environment Chap. 2

2.2 Physical Organization Of The PC

A PC is constructed from a set of printed circuit boards. One printed circuit board is
the motherboard containing the microprocessor, computer memory and associated cir-
cuits. In addition, there is a collection of sockets into which other printed circuit cards
may be inserted. These sockets form the backplane and serve two functions: they hold
the cards in place and provide electrical connections to them. These wired-together sock-
ets are collectively called a bus. Some PCs do not have a motherboard; in such systems,
the microprocessor and memory circuits are put on a card inserted into the backplane.

Figure 2.1 A motherboard with backplane and cards.

Cards in the backplane are usually used for additional memory or for I/O devices.
Instead of one specific set of cards, vendors offer a variety of cards so that each customer
can plug together a customized configuration. For example, one type of board contains
additional memory and a real-time clock device. Another contains less memory but in-
cludes devices that communicate with modems or printers. Yet another contains a high-
resolution graphics interface.

A board can communicate with other boards only by passing signals across the bus.
When the processor needs to write to a memory card on the bus, it places the address and
data on the bus for the memory card to retrieve and store. When it needs to read data or
fetch instructions, it places the address on the bus and asks the memory card to supply the
data value. Naturally, the details of the bus design specify exactly how the cards manipu-
late and respond to signals to make these operations work correctly; for our purposes,
such details are unimportant.



-- --

Sec. 2.2 Physical Organization Of The PC 21

Independent of the physical arrangement and number of cards, memory must always
be logically contiguous. To permit memory from several boards to be mapped into a
contiguous address range, each board contains switches that can be changed. Thus, it is
possible to configure two identical memory boards so that one responds to low memory
addresses while the other responds to higher addresses. Likewise, the I/O device inter-
faces contain switches, so two boards can be configured to represent two distinct devices
even though they happen to be the same physical type.

2.3 Logical Organization Of The PC

The operating system is concerned with the logical organization of the machine, not
its physical organization. The next sections describe the highlights of the PC hardware
that affect some of the code described later. It is not important to understand all the de-
tails now. Programmers familiar with the PC architecture can skip most of the material;
other readers should skim through the text to learn the basic ideas and refer to it when
specific details arise in later chapters.

2.3.1 The Address Space

Memory on the 8088 is divided into 8-bit quantities called bytes, with the byte being
the smallest addressable unit. The term character is often used in place of byte because
bytes are commonly used to hold characters. Most instructions can operate on either
bytes or words (16 bits). Word operations may refer to even or odd byte addresses; the
operation always affects the addressed byte and the next higher byte. Programmers un-
familiar with the 8088 should note that the address of the low-order byte of a word is the
same address as that of the word itself.

The 8088 can address up to 1024K bytes of memory (K=1024) because physical ad-
dresses are 20 bits long. However, on the PC, addresses larger than 640K are reserved
for the console display and ROM software.

While a physical address for the 8088 is specified by a single 20-bit unsigned
number, the instruction set of the processor cannot handle 20-bit addresses. Instead, the
8088 uses logical addresses specified by two unsigned 16-bit numbers, one called the
segment and the other the offset. A logical address expressed in this way is called a
segment:offset address and is written in the form

segment : offset.

We will always express processor addresses, both 20-bit physical address and
segment : offset address, in hexadecimal (base 16) notation.

A segment : offset address is translated into a 20-bit physical address (5 hexadecimal
digits) by multiplying the segment component by 16 (decimal) and adding the offset. In
hexadecimal notation, multiplying by 16 is equivalent to appending a low-order zero.
For example, the segment : offset address



-- --

22 An Overview of the Machine and Run-Time Environment Chap. 2

14CF:B35E

is translated into the physical address

14CF0
+B35E� �����������
2004E

Also observe that a given physical address can be represented in more than one way us-
ing segment : offset addresses. The above address, for example, can also be represented
as the segment : offset address

13CF:C35E.

Segment : offset addresses require four bytes of storage, two bytes for the segment and
two for the offset. The offset component is stored in the two lower-address bytes and the
segment component is stored in the two higher-address bytes.

The first 1K of 8088 memory, from 00000 to 003FF, is reserved for interrupt vec-
tors. An interrupt vector is a four-byte segment : offset address of code to be executed
upon receipt of a hardware or software interrupt. There is room for 256 interrupt vectors
in this area. Interrupts will be discussed later in this chapter.

Addresses 00400 through 9FFFF constitute available user memory. Addresses
A0000 through FFFFF are reserved for video graphics and ROM subroutines. All ad-
dresses refer to one physical address space; there is no memory management hardware
on the basic PC. (While the 80286 does support a form of memory management, this
feature will not be discussed further.)



-- --

Sec. 2.3 Logical Organization Of The PC 23

address contents� ���������������������
00000

interrupt
vectors

003FF � ���������������������
00400

real
memory

9FFFF � ���������������������
A0000

video
RAM

ROM
BIOS
code

FFFFF � ���������������������
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 2.2 The address space of the PC microcomputer system.

2.3.2 Registers In The 8088

Figure 2.3 illustrates that the 8088 processor contains twelve 16-bit registers, an In-
struction Pointer, and a 16-bit FLAGS register.



-- --

24 An Overview of the Machine and Run-Time Environment Chap. 2

Register Use	 	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
AX general purpose
 
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

BX general purpose� �������������������������������������������������������������
CX general purpose� �������������������������������������������������������������
DX general purpose ������������������������������
SP stack pointer� �������������������������������������������������������������
BP base pointer� �������������������������������������������������������������
SI source index� �������������������������������������������������������������
DI destination index� �������������������������������������������������������������
CS code segment� �������������������������������������������������������������
DS data segment� �������������������������������������������������������������
ES extra segment� �������������������������������������������������������������
SS stack segment� �������������������������������������������������������������
IP instruction pointer� �������������������������������������������������������������

FLAGS flags word� �������������������������������������������������������������
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 2.3 Registers in the 8088

The segment registers CS, DS, ES and SS are used as default segment addresses for most
instruction and data references using the other registers. For example, CS:IP provides the
segment : offset address of the next instruction to execute. Most references to data use
DS as the default segment component of their segment : offset addresses. Stack opera-
tions use segment : offset addresses of the form SS:SP. The C compiler uses SS:BP to
point to the stack frame on the run-time stack for the currently active procedure.

The PC-Xinu system uses separate, fixed code and data segments using segment re-
gisters CS and DS, respectively; the stack segment SS coincides with the data segment
DS. This provides 64K of code space in the code segment and 64K for data and stack
space in the data segment.

The low- and high-order bytes of the registers AX, BX, CX and DX can be accessed
directly using L and H to replace the X in the register designation. Thus AL refers to the
low-order byte of the AX register, and AH refers to the high-order byte.

2.3.3 FLAGS Word

The FLAGS word contains the interrupt flag and condition code bits. The interrupt
flag, which is bit 9 of the FLAGS word, is the only component which concerns us here.
Figure 2.4 shows the layout of the FLAGS word.



-- --

Sec. 2.3 Logical Organization Of The PC 25

Bits: 15 through 10 9 8 through 0� �����������������������������������������������������������������������������������������
Contents: . . . interrupt flag . . .� �����������������������������������������������������������������������������������������

�� �� �� ��

Figure 2.4 The bits of the 8088 FLAGS word.

When the interrupt flag is set (1), the processor will acknowledge hardware interrupts
such as those produced by the keyboard or disk drive When the flag is clear (0), the pro-
cessor will ignore hardware interrupts. Notice that software interrupts will always be
acknowledged, independent of the setting of the interrupt flag.

The interrupt flag may be set using the STI (SeT Interrupt flag) instruction and
cleared using the CLI (CLear Interrupt flag) instruction.

The FLAGS word contains additional bits which are used for conditional branches.
These bits are modified by arithmetic and logical instructions. The two flags that PC-
Xinu uses are the carry flag and the zero flag. These flags are described in Figure 2.5.

Flag Meaning�����������������������������������������������������������������������������������������������
CF Carry Flag

set (1) on unsigned overflow/underflow
reset (0) otherwise�����������������������������������������������������������������������������������������������

ZF Zero Flag
set (1) when the result is zero
reset (0) otherwise�����������������������������������������������������������������������������������������������

  
 
 
 
 
 
 

  
 
 
 
 
 
 

  
 
 
 
 
 
 

Figure 2.5 Arithmetic and logical flags

2.3.4 Vectored Interrupts

The 8088 processor employs the conventional vectored interrupt scheme for han-
dling exceptions and interrupts from external devices. Whenever an external device
needs to communicate with the processor, the device places a signal on the interrupt bus
line. If the processor is running with interrupts enabled, it checks the interrupt line after
executing each instruction to see whether an interrupt needs processing. To handle the
interrupt, the processor disables further interrupts and sends an acknowledgement over
the bus, requesting that the interrupting device return an interrupt type, which is a one-
byte quantity. The device with a pending request receives the acknowledgement and
responds by returning its interrupt type, v, to the CPU on the data bus. When it receives
the interrupt type, the processor pushes the current FLAGS word and the CS:IP address
on the stack, loads the CS:IP address from the two words in memory starting at location
4v, and continues executing instructions beginning at the new location. The code at this
location is called an interrupt service routine, or ISR.



-- --

26 An Overview of the Machine and Run-Time Environment Chap. 2

Each device is assigned a unique interrupt type (and therefore an interrupt vector ad-
dress), enabling the system software to distinguish among them. Thus, there is no need
to poll devices to find out which one needs service when an interrupt occurs because the
software can identify devices based on their interrupt types.

It is the programmer’s responsibility to insure that an appropriate ISR has been in-
stalled before the interrupt occurs so that the interrupt vector location in memory contains
the segment : offset address of the ISR. When an interrupt does occur, the stack SS:SP
must point to a valid stack address that can hold at least three 16-bit words to save the
FLAGS word and the CS:IP address.

An interrupt acts like a procedure call (except that the hardware forces it to occur
‘‘between’’ the execution of two instructions in the user’s code). The processor executes
code in the ISR, eventually returning to the place at which the user’s program was inter-
rupted. To make the interrupt transparent to a running program, the ISR must save and
restore the state of the machine. On the 8088, saving the state consists of saving any re-
gisters used in the ISR. The FLAGS word does not need to be saved because the inter-
rupt mechanism pushes the FLAGS word on the stack at interrupt time. In practice, re-
gisters that need to be saved are pushed on the stack. The stack pointer (SP) need not be
saved provided that the ISR pops off whatever it pushes on the stack before returning
(i.e., restores the stack to its original position).

To prevent the ISR from itself being interrupted by another device, the processor
disables interrupts prior to executing code in the ISR. In some cases it may be possible
or even desirable to allow for interrupts to be acknowledged during execution of an ISR.
In this case, the routine itself may simply enable interrupts.

Interrupt processing ends when the processor executes a return from interrupt in-
struction (IRET). In a single step, the IRET instruction restores the CS:IP segment ad-
dress and FLAGS word from the stack and returns the stack pointer to its original value.
This action reverses that taken by the processor when it detected an interrupt and allows
processing to continue where it was interrupted.

2.3.5 Exceptional Conditions

Exceptional conditions are handled by the 8088 exactly like interrupts. An excep-
tion, like division by zero, a memory error, or power failure, can be thought of as a
hardware detected error. When an exception occurs, the processor pushes the current
FLAGS register and CS:IP address onto the stack and loads a new CS:IP from a vector
location in memory. As with interrupt vectors, the programmer assumes responsibility
for storing a valid address of an ISR in each exception vector. Unlike interrupt vector lo-
cations that can be changed, however, exception vectors are permanently assigned by the
hardware.



-- --

Sec. 2.3 Logical Organization Of The PC 27

2.3.6 Software Interrupts

Software interrupts are program-invoked instructions like subroutine calls, but are
handled by the 8088 processor just like hardware interrupts. An interrupt instruction has
the form

INT n

where n is an interrupt type. When this instruction is executed, the processor behaves as
if a hardware device caused an interrupt with interrupt type n, resulting in execution of
the code whose segment : offset address is in interrupt vector location 4n. A software in-
terrupt is executed regardless of the value of the interrupt flag in the FLAGS register.
When the ISR returns with an IRET instruction, control returns to the instruction follow-
ing the INT instruction.

Software interrupt mechanisms are often employed by operating systems to permit
user access to system services without the user needing to know the address of the ser-
vice subroutine. It allows the ISR code to be modified or relocated without having to
make changes in user code. The chief disadvantage of software interrupts is that the in-
terrupt instruction (INT) and the corresponding return from interrupt (IRET) instruction
are more time-consuming to execute than simple subroutine call and return instructions.

Low-level system services provided by the ROM BIOS are accessed through
software interrupts, as we shall see in the next section.

2.3.7 The ROM BIOS

The PC ROM BIOS (Basic Input/Output System) plays several roles. For our pur-
poses, it provides a virtual machine which insulates us somewhat from the actual pecu-
liarities of the hardware. PC-Xinu will run on any PC system that supports the standard
BIOS calls and hardware interrupts described below. This is not without a penalty, how-
ever. BIOS calls are not particularly efficient; for example, the BIOS keyboard ISR
buffers keyboard characters prior to PC-Xinu doing the same. BIOS calls are also not
re-entrant, meaning that multiple processes cannot be executing such calls simultaneous-
ly.

The BIOS contains code which is executed when the the power to the PC is turned
on. This code sets up the standard device interrupt vectors, does a system integrity test
and memory check, and then reads and starts execution of the operating system stored on
disk. The BIOS contains the ISRs for the keyboard, disk, and clock which are necessary
for system operation.

The BIOS also provides user-accessible routines for accessing keyboard characters
(KBD), writing to the video display (VID), and carrying out disk transfer operations
(DSK). These routines are accessed through software interrupts and are summarized at
the end of this section. Note that the BIOS provides a number of additional services
which will not be discussed here.



-- --

28 An Overview of the Machine and Run-Time Environment Chap. 2

Most BIOS software interrupts have subfunctions which provide specific BIOS ser-
vices for the particular device. For example, one subfunction for KBD returns informa-
tion about whether there are any characters in the keyboard buffer, and a second subfunc-
tion returns the next character from the keyboard buffer. The subfunction number is con-
ventionally loaded into the AH register prior to making the INT call. Other information
is passed to the BIOS routine through registers. Information returned to the user after
making a BIOS call is stored in specific registers or in bits in the FLAGS word. Aside
from the use of register AH for passing a subfunction code, there is no standard meaning
for register use among the different BIOS routines. PC technical documentation states
that BIOS calls preserve all registers not specified in the calling sequence or return regis-
ters. Specific register conventions for each of the standard BIOS routines discussed in
this book are given in subsequent sections.

2.3.8 BIOS Interrupt Service Routines

The BIOS handles standard device and exception interrupts. Upon system startup,
the device and exception interrupt vectors are loaded with the segment : offset addresses
of BIOS ISRs which are used to service these devices.

It is possible for a user program to revector a device interrupt to another, non-BIOS
ISR. To do this, it is only necessary to load the segment : offset address of the new ISR
into the device vector location, after which all the device interrupts will be handled by
the new ISR. Loading this address should be carried out with processor interrupts dis-
abled to avoid the problem of an interrupt occurring in the midst of changing the address.

BIOS services will not function properly if device interrupts are revectored to user
programs. For example, if keyboard interrupts are revectored and serviced only by a user
ISR, the BIOS KBD routines will never have the opportunity to determine when key-
strokes have occurred and, consequently, will not be able to put characters in the BIOS
keyboard buffer. On the other hand, if keyboard device interrupts are not revectored, a
user program may not know when an interrupt has occurred and may be forced to poll the
keyboard device to determine if a character is available. The result is a needless and
time-consuming execution of code.

The solution to the revectoring dilemma is to observe that the user program needs to
be informed when a device interrupt has occurred and to allow the BIOS ISR to handle
the interrupt as it usually does. To do this, the device interrupts should be revectored to a
user ISR that marks the presence of the interrupt but then immediately calls the standard
BIOS ISR to service it. When the BIOS ISR returns to the user ISR, the user code will
know that an interrupt has occurred, can call BIOS functions to extract buffered data, or
can initiate other system activities which depend upon the occurrence of the interrupt.

Two device interrupts that will be revectored in this way are the keyboard
(KBD_INT) and clock (CLK_INT). These devices will be discussed in Section 2.4.



-- --

Sec. 2.3 Logical Organization Of The PC 29

2.3.9 Pseudo-device interrupts

In the discussion of software interrupts, we observed that an INT instruction can
cause an interrupt action which behaves exactly like a hardware interrupt. When this
happens through the BIOS as the result of an asynchronous event such as a ‘real’ device
interrupt, we call it a pseudo-device interrupt. The BIOS initiates pseudo-device inter-
rupts upon receiving certain keystrokes. For example, receipt of the keyboard combina-
tion Ctrl-Break results in a type 1BH (hexadecimal†) software interrupt issued by the
BIOS. PC-Xinu revectors this interrupt and terminates execution upon its receipt after
restoring all the revectored interrupts back to their previous states. Note that this inter-
rupt should not call the standard ISR first, since chaos may result if PC-Xinu loses con-
trol forever without having the chance to restore its revectored interrupts.

2.3.10 Interrupt Vector Summary

Figure 2.6 summarizes the device interrupts that PC-Xinu monitors and the BIOS
services it uses. More information about specific device ISRs will be discussed in the
sections below.

Interrupt
Type Name Description!"!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!�!
08H CLK_INT clock hardware interrupt#"#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#
09H KBD_INT keyboard hardware interrupt$"$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$
10H VID video display BIOS service%"%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%�%
13H DSK disk BIOS service&"&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&�&
16H KBD keyboard BIOS service'"'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'�'
1BH KBD_BRK Ctrl-Break pseudo device("(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(�(

))
)
)
)
)
)
)
)

))
)
)
)
)
)
)
)

))
)
)
)
)
)
)
)

))
)
)
)
)
)
)
)

Figure 2.6 BIOS interrupts

2.4 Standard PC I/O Devices

A typical PC system has hardware devices for keyboard input, video output, mass
storage, and a real-time clock. Additional devices on some systems may include parallel
or serial ports for modems, printers, or pointing devices such as a mouse, or for high-
resolution graphics displays. We will assume a standard configuration consisting of a
keyboard, a video display, a single floppy disk, and a real-time clock.

* *�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*�*
† Throughout the text we will use the assembly language convention that constants with a trailing ‘H’ are

hexadecimal. In the C programming environment, we will adhere to the C convention that constants with a
leading 0x are hexadecimal and constants with a leading 0 are octal. As noted before, segment : offset addresses
will always be assumed hexadecimal.



-- --

30 An Overview of the Machine and Run-Time Environment Chap. 2

2.4.1 Keyboard

A keyboard interrupt occurs whenever a key is pressed or released. This interrupt
(KBD_INT) has type 09H and, consequently, has interrupt vector at location 0000:0024.
The scan code of the key that was pressed or released is read from the keyboard data
port.

When an alphabetic key is pressed, its scan code is used to look up its corresponding
ASCII character code which is then deposited in RAM into a small BIOS keyboard
buffer. Some keys, such as ‘Shift’ or ‘Ctrl’, have different effects when they are pressed
than when they are released, and others, such as ‘Caps Lock’, result in a ‘‘toggle’’ action.
Information about the states of these keys is kept in a fixed RAM location known to the
ROM BIOS.

PC-Xinu revectors keyboard interrupts of type 09H to its own code space. But the
task of handling interrupts for both pressing and releasing keys, as well as translating
scan codes into ASCII codes, is already done by the ROM BIOS and, except for the sake
of efficiency, it is unnecessary for PC-Xinu to duplicate this effort. Consequently, upon
receipt of the interrupt, PC-Xinu first calls the BIOS keyboard ISR to retrieve the scan
code from the keyboard port and to deposit a character in the BIOS keyboard buffer if
appropriate. Upon return from the BIOS call, the PC-Xinu keyboard ISR awakens a
special-purpose process whose job is to retrieve the character from the BIOS keyboard
buffer.

Characters are deposited by the BIOS in the keyboard buffer as 16-bit key codes.
Typically, the key code of a key is composed of the scan code (obtained from the key-
board) in the high byte and the ASCII code of the key in the low byte. If the low byte is
zero, the key code corresponds to one of several special keys such as function keys or
keypad keys which do not have ASCII counterparts.

Two KBD subfunctions are used to retrieve characters from the keyboard buffer.
Subfunction KBDPEND conditionally sets the Z-flag (ZF) in the FLAGS register
depending on whether there is a character in the keyboard buffer. If ZF=1 upon return,
the keyboard buffer is empty. If ZF=0 upon return, the keyboard buffer is nonempty and
AX contains the first character in the buffer.

Subfunction KBDGETC of KBD removes the first character in the keyboard buffer
and returns with its key code in register AX. If the keyboard buffer is empty, the routine
waits (using a busy-wait loop) until a character is ready. Notice that PC-Xinu avoids this
busy-wait by making this subfunction request only if it has detected the presence of a
character in the keyboard buffer using subfunction KBDPEND.

Figure 2.7 gives a summary of these KBD subfunctions.



-- --

Sec. 2.4 Standard PC I/O Devices 31

INT KBD (KBD=16H)
Subfunction

AH Name Description Registers+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+�+
00H KBDGETC Read next character returns:

in keyboard buffer AX=key code
(busy wait if
buffer is empty),�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,�,

01H KBDPEND Test for character returns:
in keyboard buffer ZF=1 if no key in buffer

ZF=0 & AX=key code-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-�-
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

Figure 2.7 Keyboard I/O subfunctions

2.4.2 Video Display

Characters are displayed on the video display by special-purpose hardware which reads
ASCII codes and character attributes from specific RAM locations and displays the infor-
mation in human-readable form on a graphics display device such as a CRT. Describing
the actual hardware devices used in the video display is beyond the scope of this book.

Each character position on the video display corresponds to a 16-bit video RAM lo-
cation; the low byte contains the ASCII code for the character (or special graphics sym-
bol) to be displayed, and the high byte contains attribute information. The attribute byte
determines how the character or symbol is to be displayed and how the background will
appear; attributes include color, intensity, and blink. Of course, monochrome displays do
not support color attributes.

The layout of the attribute byte is given in Figure 2.8.

Bits: 7 6-5-4 3 2-1-0/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/�/
Contents: blink background intensity foreground0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0

11 11 11 11 11

Figure 2.8 Bits of a video attribute byte

For normal white-on-black display the three foreground bits will represent 7 (binary
111), and the remaining bits will be 0.

A 25-line, 80-column display has 2000 (decimal) character locations and, therefore,
requires 4000 bytes of video memory to display one complete screenful of text. Observe
that even blanks are considered as ‘characters’, so an all-blank screen still requires 4000
bytes of memory. The character/attribute bytes are stored in consecutive video RAM
memory locations on a row-by-row basis, and from left-to-right in each row. Thus the
leftmost character at the top row of the screen appears as the first character/attribute pair
in video RAM, and the rightmost character at the bottom of the screen appears as the last
pair in video RAM.



-- --

32 An Overview of the Machine and Run-Time Environment Chap. 2

It is possible to change the contents of the video display by writing directly to video
RAM memory locations. This technique is often the fastest way to display text informa-
tion on the screen. However, the ROM BIOS provides video display (VID) services
which accomplish the same task and, in addition, provides other services such as posi-
tioning the cursor on the screen and erasing and scrolling portions of the screen. Figure
2.9 summarizes the VID subfunctions used by PC-Xinu.

INT VID (VID=10H)
Subfunction

AH Name Description Registers2 2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2�2
00H SETMOD Set video mode AL=2 for monochrome

AL=3 for color3 3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3�3
02H SETCSR Set cursor position DH=row (0 .. 24)

DL=col (0 .. 79)
BH=[0]4 4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4�4

05H SELADP Select display page AL=[0]5 5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5�5
06H SCRLUP Scroll/clear window AL=no. of lines to scroll

(AL=0 to clear entire window)
CH,CL=top left row,column
DH,DL=bottom right row,col
BH=attr. of blanked lines6 6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6�6

0AH WCHR Write char at current AL=character
cursor position BH=[0]

CX=[1]7 7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7�7
0EH WTTY TTY write (handles AL=character

scroll, special chars) BH=[0]
BL=[7]8 8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8�8

99
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9

99
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9

99
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9

99
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9

99
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9

Figure 2.9 Video IO subfunctions

The values shown in brackets are the ones PC-Xinu uses; the other values depend on the
request. Conventional screen output is possible with subfunction 0EH (WTTY). The
other subfunctions are used in the window environment described in Chapter 14.

2.4.3 Floppy Disk

Computer systems often use magnetic storage devices for storage of bulk information.
The name disk implies that the recording surfaces are shaped in round, flat platters that
spin. The platter surfaces are coated with a material that records magnetic fields just as a
magnetic recording tape does. The mechanism that changes or senses this magnetic coat-
ing is called a read-write head. A mechanical arm, actuated electrically, positions the
head(s) to a specified location on the disk, and analog sensing hardware reads or writes
data as the disk spins under the head. To increase capacity, multiple platters are often



-- --

Sec. 2.4 Standard PC I/O Devices 33

built on one spinning rod, a spindle, accessed by an arm with multiple heads attached.
Normally, disk heads do not contact the magnetic surface; they ‘‘fly’’ incredibly close to
it on a cushion of air. Accidents that occur when mechanical shock or dust particles on
the surface cause the heads to bounce up and down and ruin the magnetic surface are
called head crashes.

Figure 2.10 A disk arm with two read/write heads.

At a given arm position, the surface area under one head forms a ring called a track.
The set of all tracks for a given arm position is called a cylinder because the tracks out-
line a cylinder in 3-dimensional space.

Each track is divided into fixed-length sectors; a sector is the smallest unit of
storage that can be read or written in a single operation. PC-Xinu software assumes a
sector length of 512 bytes. Data transferred to or from a sector is often called a block.

Compared to main memory, which operates at speeds measured in nanoseconds,
disk devices are slow and awkward. If the drive motor is not running, starting the motor
and waiting for it to come up to speed may take 500 milliseconds. Once the motor is run-
ning, moving the arm to the correct track requires tens of milliseconds. Even reading a
track once the arm is in place is nontrivial because the disk must revolve at least once,
which may take another 100 milliseconds. Thus, a disk access can be on the order of a
million times slower than a memory access. To put this in perspective, imagine that you
need to retrieve a pencil before you continue some task. Suppose it takes 10 seconds to
walk to your desk (high speed memory) and retrieve one. A retrieval operation that took
a million times as long would last roughly 115.7 days. After a few such retrieval opera-
tions, you would quickly learn to save pencils in your desk drawer to avoid the trip.



-- --

34 An Overview of the Machine and Run-Time Environment Chap. 2

Operating systems use an analogous technique − they often contain complex algorithms
that save copies of frequently-used blocks to avoid unnecessary disk accesses.

If disks are so slow, why use them at all? Disk storage offers two important features
that main memory does not. First, disk storage is less expensive byte-per-byte. Second,
it provides permanent, long-term storage. Unlike main memory which is called volatile
because data ‘‘evaporates’’ when power is removed, data on disk is nonvolatile; it per-
sists even if power to the system is turned off.

Disk hardware is much more complex than the keyboard and video devices
described above. In addition to the disk drive, which consists of the physical arm and
read/write head(s), disk hardware includes a complicated electronic controller.

A disk controller, which often contains a microprocessor itself, receives commands
from the CPU to position the disk arm, to control transfer of data, and to return status in-
formation if any errors occur. A controller can operate multiple disk drives (although it
may not be able to transfer data to more than one disk simultaneously).

The most significant difference between the disk and keyboard hardware is this:

Unlike keyboard hardware which interrupts the CPU for each key
pressed or released, the disk interface transfers large blocks of data
directly to or from memory without direct intervention by the CPU.

The technique of transferring large blocks of data without using the CPU is called direct
memory access (DMA). In the PC, DMA is carried out by a special-purpose 8237 DMA
controller chip. This chip disables the CPU while a DMA transfer is taking place and
permits the CPU to continue when the transfer is complete. In more sophisticated sys-
tems, DMA transfers can take place at the same time as the CPU is executing instruc-
tions. In such systems, system throughput is increased dramatically by allowing simul-
taneous data transfer to several peripherals while the CPU continues to execute instruc-
tions.

2.4.4 The Pieces Of Disk Hardware

The disk hardware has no notion of file or directory built in; these are added by the
system software, as we will see in Chapter 17. For a specific drive, the hardware consid-
ers each physical sector of disk data to be addressed by a physical sector address, which
is a tuple of the form

(cylinder, surface, sector)

The cylinder is the number of the cylinder on the drive, starting with zero as the outer-
most cylinder. Surface specifies which read/write head is to be used. A double-sided
disk has two surfaces numbered zero and one; a multi-platter disk has more than two sur-
faces. Note that the combination (cylinder, surface) specifies a track. Finally, the sector
designates which sector of the specified track is to be used; sector numbers within a track
usually start with one.



-- --

Sec. 2.4 Standard PC I/O Devices 35

In the standard PC configuration, a floppy disk consists of 40 cylinders (numbered 0
to 39), 2 surfaces (numbered 0 and 1) per cylinder, and 9 sectors (numbered 1 to 9) per
track. This gives a total of 720 sectors per drive. Since each sector contains 512 bytes,
the total capacity of a disk is 368,640 bytes, or 360K.

2.4.5 Logical sector numbers

It is convenient to think of each of the 720 sectors of a disk as having a unique sec-
tor number in the range 0 to 719, which we will call a logical sector number. However,
the disk controller interface requires physical sector addresses in (cylinder, surface, sec-
tor) format. Not just any correspondence between logical sector numbers and sector ad-
dresses will do, since moving the disk arm is a particularly time-consuming operation,
and disk requests frequently cluster together in logically adjacent sectors. The guiding
principle is thus:

Logical sector numbers should map to physical sector addresses in
such a way that consecutive logical sector numbers map as often as
possible into physical sector addresses that lie on the same track.

The simplest way to carry out this principle is to map the first logical sector numbers 0
through 8 into physical sector addresses (0,0,1) through (0,0,9), 9 through 17 into (0,1,1)
through (0,1,9), 18 through 26 into (1,0,1) through (1,0,9), etc. In general, given a logi-
cal sector number, lsn, the mapping into (cylinder, surface, sector) is given by

sector = (lsn % 9) + 1;
lsn = lsn / 9;
surface = (lsn % 2);
lsn = lsn / 2;
cylinder = lsn;

where ‘%’ means the modulus operator.
The hardware reads data by copying a sector on the disk to a block in memory, and

writes data by copying a block from memory onto a sector of the disk. Using the disk
hardware consists of passing read or write requests to the BIOS disk function DSK,
which carries them out and reports the results. As with the keyboard and video display
devices, the read and write requests are subfunctions of the DSK function. These sub-
functions are detailed in Figure 2.11 below.



-- --

36 An Overview of the Machine and Run-Time Environment Chap. 2

INT DSK (DSK=13H)
Subfunction

AH Name Description Registers: :�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:�:
02H DSKREAD Read sector AL=[1]

CL=sector no. (1-9)
CH=cylinder (0-39 decimal)
DL=drive (0-no. of drives)
DH=surface (0-1)
ES:BX=transfer address
see below for return values; ;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;�;

03H DSKWRITE Write sector same as above< <�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<
==
=
=
=
=
=
=
=
=
=

==
=
=
=
=
=
=
=
=
=

==
=
=
=
=
=
=
=
=
=

returns:
CF (carry flag) = 0 for successful operation
CF = 1 for failure & AH=error code (hex):
02H=invalid sector ID
03H=write protect error
04H=record not found
08H=DMA overrun
09H=access across 64K boundary
10H=CRC error
20H=controller failure
40H=seek failure
80H=timeout - disk failed to respond> >�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>�>

??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

Figure 2.11 Diskette I/O subfunctions

The register value for AL in brackets is used by PC-Xinu software; the values in the oth-
er registers depend on the request.

2.4.6 Real-Time Clock

A real-time hardware clock is one of the most important devices to an operating sys-
tem. A clock enables the operating system to ensure that processes take no more than
their share of processor time. A clock also allows the operating system to provide time-
related services to processes, including keeping track of the current time-of-day. We will
discuss the role of a real-time clock in PC-Xinu in more detail in Chapter 10.

The PC contains a clock circuit having a frequency of 1.19318MHz. The output
from this circuit is connected to an 8253 timer chip which divides this frequency by
65536 to provide an interrupt approximately 18.2 times per second. This interrupt has
type 08H and has its vector at location 0000:0020.



-- --

Sec. 2.4 Standard PC I/O Devices 37

At each clock interrupt, the BIOS interrupt service routine for the clock increments
a 32-bit time-of-day counter. In addition, the BIOS ISR monitors the state of the diskette
motor and turns off the motor if it has been on for about two seconds without an interven-
ing diskette I/O request.

Similar to keyboard interrupts, PC-Xinu revectors clock interrupts of type 08H to its
own code space. Upon receipt of the interrupt, PC-Xinu first calls the BIOS clock ISR.
When the BIOS call returns, PC-Xinu carries out its clock-specific activities.

2.5 The C Run-Time Environment

Operating systems should be written in high-level languages because it makes them
easier to write, understand, debug, and move to other machines. We have chosen the C
programming language for PC-Xinu. C is a concise and powerful systems language that
is well-suited to operating system implementation. It allows the programmer to manipu-
late addresses and specify storage layouts. It is also a high-level language that supports
parameterized procedures, reasonable control statements, and separate compilation.

For the most part, it is possible to write an operating system without knowing the
details of the compiler, the code it produces, or the conventions used by that code when it
runs. From time to time, however, it will be necessary to manipulate the underlying run-
time environment. This section reviews a few of the pertinent details.

The C compiler expects that each program will be run in an address space laid out in
two segments. Figure 2.12 shows the arrangement of segments at run-time.

@ @�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@�@
code data AA stack BB heapC C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C�C

<-- text segment (CS) --> <-- data segment (DS=SS) -->
DD
D

DD
D

DD
D

Figure 2.12 Storage layout for a C Program

The text segment, which includes code for the main program and all procedures, occupies
the lower part of the address space and is referenced using the CS segment register. The
data segment, which contains program data followed by the stack and heap, occupies the
higher region of the address space. Data segment references are made using the DS seg-
ment register. The SS (stack) segment register always points to the same segment as the
DS register. The stack occupies a fixed-size component of the data segment address
space immediately beyond the program data. The stack pointer (SP) initially points to
the highest address of the stack and grows downward. The area between the stack and
the top of the data segment address space is free space which may be used for run-time
storage allocation (the heap).

When PC-Xinu runs multiple processes, it allocates a stack area for each of them
(but places the text and data for all processes together). These stacks are generally allo-
cated from the bottom of free space. Thus, if three processes start, their stacks are allo-
cated contiguously upward as shown in Figure 2.13:



-- --

38 An Overview of the Machine and Run-Time Environment Chap. 2

E"E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E�E
code data stack #1 stack #2 stack #3 free spaceF"F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F�F

GG GG GG GG GG GG GG

Figure 2.13 Storage layout when PC-Xinu runs.

Because the hardware does not protect one user from another, stack overflow in one pro-
cess will, unfortunately, destroy the data in a stack that belongs to another process. (An
exercise at the end of Chapter 4 outlines one way to check for stack overflow.) Stack
space is returned to the free list whenever a process exits. PC-Xinu also provides a sys-
tem call that allocates free space to user processes for general use.

There is an important distinction between names in object programs and names in C
source programs. It is this:

The compiler adds an underscore to all external symbols in C pro-
grams.

Thus, names like _end are declared in C without the underscore (i.e., ‘‘extern end’’).
The reader must remember this distinction when comparing C to assembler programs in
which external symbols have explicit underscore prefixes.

The C procedure calling conventions are extraordinary. During a procedure call, the
calling procedure is easiest to understand. It pushes actual arguments on the stack in re-
verse order and then calls the specified routine. Pushing parameters in reverse order al-
lows procedures like printf to be called with a variable number of arguments. Even
though the called routine cannot determine the number of arguments from the informa-
tion on the stack, it can always find the first argument by looking on the stack just
beyond the return address. Under the C conventions, the calling procedure is also
responsible for popping arguments off the stack after the called procedure returns.

The C calling sequence becomes more complex after the called procedure begins.
The called procedure is responsible for preserving certain registers that it will use. In
particular, the BP, SI and DI registers must be saved upon procedure entry and restored
upon exit. Saving SI and DI is necessary only if these registers are used by the pro-
cedure.

The BP register performs an important referencing function during procedure execu-
tion. Upon procedure entry, the current value of BP is pushed onto the stack and the
value of SP is moved into BP. Space is then allocated on the stack to accommodate au-
tomatic local variables. Finally, registers SI and DI are pushed on the stack if necessary.
(The location where these registers are pushed on the stack may vary from compiler to
compiler.)

BP serves as a pointer to the stack frame containing the parameters passed by the
caller and the procedure’s local variables. At this point the stack frame appears as fol-
lows:



-- --

Sec. 2.5 The C Run-Time Environment 39

HIH�H�H�H�H�H�H�H�H�H�H�H�H
SP --> saved DI low memoryJIJ�J�J�J�J�J�J�J�J�J�J�J�J

saved SIKIK�K�K�K�K�K�K�K�K�K�K�K�K

local
variables

LIL�L�L�L�L�L�L�L�L�L�L�L�L
BP --> saved BPMIM�M�M�M�M�M�M�M�M�M�M�M�M

return addrNIN�N�N�N�N�N�N�N�N�N�N�N�N

parameters
high memoryOIO�O�O�O�O�O�O�O�O�O�O�O�O

PP
P
P
P
P
P
P
P
P
P
P
P
P
P

PP
P
P
P
P
P
P
P
P
P
P
P
P
P

Figure 2.14 C stack frame

During subroutine execution, parameter and local variable values can be determined us-
ing fixed offsets to BP.

Return values are deposited into registers before returning to the calling procedure.
Integer (16-bit) return values are deposited in the AX register; return values longer than
16 bits use additional general-purpose registers. The called procedure returns to the cal-
ling procedure after popping the saved DI and SI registers, deallocating space for local
variables, and popping the saved BP register. Note that the parameters remain on the
stack upon return to the calling procedure; it is the calling procedure’s responsibility to
deallocate the parameters on the stack.

2.6 Assembly Language Interface

Assembly language procedures which will be called from C programs must follow
the layout of the stack frame during subroutine execution as described in the previous
section. The following examples illustrate assembly language procedures and related C
procedures which are used in PC-Xinu.

To use these procedures, the assembler must be used to create object modules from
the assembly language files, and the C compiler must be used to create object modules
from the C program files. The final step to produce executable code is to link the assem-
bled and compiled object modules together with the object module of a main driver pro-
gram. The main driver program for PC-Xinu will be introduced in Chapter 13. In the
meantime, special purpose main programs may be written to serve as test drivers.



-- --

40 An Overview of the Machine and Run-Time Environment Chap. 2

2.6.1 Low-Level Keyboard Input

The procedure kbdgetc returns the next character from the BIOS keyboard buffer or,
if there is no character available, returns NOCH. The constant NOCH is defined in the
header file kbdio.h and is designed to have a value which cannot be that of an ordinary
character.

/* kbdio.h */

#define NOCH -1

#define SPEC 0x100

extern int kbdgetc(); /* defined in kbdio.asm */

extern int kbdint(); /* defined in kbdio.asm */

extern int kgetc(); /* defined in kgetc.c */

File kbdio.h introduces features of C and conventions used throughout the book.
Because the name ends in .h, it implies that this file will be included in other programs
(the h stands for header). Such files often contain the declarations for global data struc-
tures, symbolic constants, and external procedures. The kbdio.h file is no exception. It
declares the functions kbdgetc, kbdint and kgetc to be global (extern), so programs in
PC-Xinu will be able to access it. It also defines symbolic constants like NOCH. Con-
stants are referenced by name throughout the code because it helps make their purpose
clear.

Kbdgetc checks whether there is a character in the buffer using the KBDPEND sub-
function of the KBD BIOS interrupt described in Section 2.3.8 This information is re-
turned in the ZF bit of the FLAGS register. The ZF flag can be tested using the condi-
tional jump instruction JNZ, which jumps to the designated label if ZF is false (0). If no
character is present, NOCH is deposited in the AX register. Otherwise the key code is
extracted from the BIOS keyboard buffer using the KBDGETC subfunction which re-
turns its value in register AX. As observed in section 2.4.2, a key code with a zero low
byte (in AL) corresponds to a special non-ASCII key; in this case, the value returned is
the value of the scan code (in AH) plus 100H, the value of SPEC.

If there is a character in the BIOS buffer, kbdgetc makes another BIOS call to re-
trieve the character. Should a second process be permitted to run between the first and
second BIOS calls, the second process could retrieve the character from the buffer before
the first process had a chance to retrieve it. In this case, when the first process resumes,
it will find the buffer empty and will be delayed by the BIOS call. To prevent this from
happening, kbdgetc clears the pcxflag variable before testing for a character in the BIOS
buffer. This effectively makes it impossible for any other process to run while kbdgetc is
being called. The value of pcxflag is restored to its original value before kbdgetc returns.
The role of pcxflag is discussed further in Chapters 4 and 9.



-- --

Sec. 2.6 Assembly Language Interface 41

Kbdgetc also preserves the FLAGS register using the pushf and popf instructions.
This is necessary because kbdgetc may be called when interrupts are disabled, and the
KBD interrupt alters the FLAGS register.

In addition to the special-purpose kbdgetc function, kbdio.asm includes the defini-
tion of a general kbdint procedure which permits access to all the KBD interrupt subfunc-
tions. Further information about these subfunctions may be obtained from the
manufacturer’s BIOS documentation.

; kbdio.asm - _kbdgetc, _kbdint

KBD equ 16H ; keyboard request interrupt

KBDGETC equ 0 ; get the character

KBDPEND equ 1 ; check for character pending

NOCH equ -1 ; no character

SPEC equ 100H ; special character offset

include dos.asm

dseg

; dummy data segment

endds

pseg

public _kbdgetc

public _kbdint

extrn pcxflag:word

;------------------------------------------------------------------------

; _kbdgetc -- get a character from the BIOS keyboard buffer

;------------------------------------------------------------------------

; int kbdgetc()

_kbdgetc proc near

pushf ; push the flags

push si

push di ; save registers

cli ; disable interrupts

xor ax,ax ; to defer rescheduling, ...

xchg ax,cs:pcxflag ; ... get and clear pcxflag ...

push ax ; ... and save for later

mov ah,KBDPEND ; get keyboard status first

int KBD

jnz getc1 ; character there?

mov ax,NOCH ; if not, send the info back



-- --

42 An Overview of the Machine and Run-Time Environment Chap. 2

jmp short getc9

getc1: mov ah,KBDGETC ; if so, actually get the char

int KBD

or al,al ; check the lower byte

je getc2 ; is it a non-ASCII special?

xor ah,ah ; if not, just send the lower byte

jmp short getc9

getc2: mov al,ah ; move scan code to lower byte

xor ah,ah ; clear out upper byte

add ax,SPEC ; add special offset

getc9: pop cs:pcxflag ; restore pcxflag

pop di

pop si ; restore registers

popf

ret

_kbdgetc endp

;-------------------------------------------------------------------------

; _kbdint -- general access to KBD interrupt; returns flags

;------------------------------------------------------------------------

; int kbdint(r)

; union REGS *r;

_kbdint proc near

push bp

mov bp,sp ; follows C calling conventions

pushf ; save flags

push si

push di ; save registers

mov si,[bp+4] ; get ptr. to register structure

mov ax,[si]

mov bx,[si+2]

mov cx,[si+4]

mov dx,[si+6] ; set up registers for call

push si

int KBD ; call the KBD BIOS interrupt

pop si ; recover register pointer

pushf ; save flags for return value

mov [si],ax

mov [si+2],bx

mov [si+4],cx

mov [si+6],dx ; return registers

pop ax ; return flags value

pop di

pop si ; restore registers



-- --

Sec. 2.6 Assembly Language Interface 43

popf ; and the flags

pop bp

ret

_kbdint endp

endps

end

Kgetc is C procedure which is companion to kbdgetc. It calls the assembly language
procedure kbdgetc to retrieve a value from the BIOS keyboard buffer, looping for anoth-
er value as long as kbdgetc returns NOCH. If the character returned by kbdgetc is a car-
riage return (’\ r’), kgetc translates it into a newline (’\ n’); otherwise kgetc returns the
character unchanged to the caller.

/* kgetc.c - kgetc */

#include <conf.h>

#include <kernel.h>

#include <tty.h>

#include <kbdio.h>

/*------------------------------------------------------------------------

* kgetc -- get the next character from the keyboard

*------------------------------------------------------------------------

*/

int kgetc(d)

int d; /* dummy parameter */

{
int ch;

while ( (ch=kbdgetc()) == NOCH )

;

return ( (ch==RETURN) ? NEWLINE : ch );

}

The loop involving NOCH at the beginning of this procedure violates the prohibi-
tion of ‘‘busy waiting’’ given in Section 1.4.7 of Chapter 1. While, in general, busy
waiting is not to be tolerated for low-level procedures in an operating system, kgetc is in-
tended for use only for system debugging or for low-level system interaction when inter-
rupts are disabled. More general keyboard routines will be discussed in Chapter 12. No-
tice that kgetc has a dummy int parameter used to make its calling sequence consistent
with the generic getc procedure defined in Chapter 11.



-- --

44 An Overview of the Machine and Run-Time Environment Chap. 2

2.6.2 Low-Level Video Display

The wtty procedure displays a character at the current cursor position on the screen.
It uses the WTTY subfunction of the VID interrupt described in section 2.4.2 The file
vidio.h contains the procedure declarations.

/* vidio.h */

extern void wtty(); /* defined in vidio.asm */

extern int vidint(); /* defined in vidio.asm */

extern void kputc(); /* defined in kputc.c */

The assembly language code is straightforward. Observe that wtty preserves the SI
and DI registers. While the standard BIOS documentation states that registers (except
those used specifically for parameter passing) are preserved by BIOS interrupts, the par-
ticular implementation used for developing these programs failed to preserve them − a
fact that resulted in several frustrating hours of debugging.

Vidio.asm also contains the definition of the vidint procedure, allowing access to all
the VID subfunctions. This procedure will be used in Chapter 14 for performing window
functions.

; vidio.asm - _wtty, _vidint

include dos.asm

VID equ 10h ; video interrupt

WTTY equ 0EH ; TTY write subfunction

FORE equ 7 ; foreground color

ADP equ 0 ; active display page

dseg

; null data segment

endds

pseg

public _wtty

public _vidint

;-------------------------------------------------------------------------

; _wtty -- put a character to the video display using WTTY call

;-------------------------------------------------------------------------

; void wtty(ch)



-- --

Sec. 2.6 Assembly Language Interface 45

; char ch;

_wtty proc near

push bp ; follows C calling conventions

mov bp,sp

pushf ; push the flags

push si ; push registers since . . .

push di ; . . . INT VID clobbers these

mov al,[bp+4] ; character to write

mov ah,WTTY ; TTY write subcommand

mov bl,FORE ; foreground color

mov bh,ADP ; display page

int VID ; call the video function

pop di

pop si ; restore registers

popf

pop bp

ret

_wtty endp

;-------------------------------------------------------------------------

; vidint -- general access to VID interrupts; returns flags

;-------------------------------------------------------------------------

; int vidint(r)

; union REGS *r;

_vidint proc near

push bp

mov bp,sp ; follows C calling conventions

pushf ; save flags

push si

push di ; save registers

mov si,[bp+4] ; get pointer to reg. structure

mov ax,[si]

mov bx,[si+2]

mov cx,[si+4]

mov dx,[si+6] ; set up registers for call

push si

int VID ; call the VID BIOS interrupt

pop si ; recover register pointer

pushf ; save flags for return value

mov [si],ax

mov [si+2],bx

mov [si+4],cx

mov [si+6],dx ; return registers

pop ax ; return flags value



-- --

46 An Overview of the Machine and Run-Time Environment Chap. 2

pop di

pop si ; restore registers

popf ; and the flags

pop bp

ret

_vidint endp

endps

end

Companion to wtty is the C procedure kputc. Like kgetc, kputc calls the assembly
language routine wtty to do the actual character output and makes a translation of new-
lines (’\ n’) into return+newline combinations (’\ r’ and ’\ n’). The first parameter to
kputc is a dummy int parameter used to make its calling sequence consistent with the
generic putc procedure described in Chapter 11. The other parameter is the character to
display.

/* kputc.c - kputc */

#include <conf.h>

#include <kernel.h>

#include <tty.h>

#include <vidio.h>

/*------------------------------------------------------------------------

* kputc -- put a character to the video display

*------------------------------------------------------------------------

*/

void kputc(d,ch)

int d; /* dummy parameter */

char ch; /* character to display */

{
if ( ch==RETURN | | ch==NEWLINE ) { /* expand newline */

ch = NEWLINE;

wtty(RETURN);

}
wtty(ch);

}



-- --

Sec. 2.6 Assembly Language Interface 47

2.6.3 Low-Level Disk Services

The disk assembly language procedure dskio performs low-level read and write
operations to the disk. The operation to perform (DSKREAD or DSKWRITE), the disk
number, and the physical sector address (cylinder,surface,sector) are passed as parame-
ters. The constants DSKREAD and DSKWRITE as well as the procedure declarations
are defined in the header file dskio.h.

/* dskio.h */

#define DSKREAD 2 /* DSK read subfunction code */

#define DSKWRITE 3 /* DSK write subfunction code */

#define RETRY 2 /* no. of disk retry operations */

#ifndef NDSECT

#define NDSECT 720 /* no. of disk sectors */

#endif

extern int dskio(); /* defined in dskio.asm */

extern int dskint(); /* defined in dskio.asm */

extern int dread(); /* defined in dio.c */

extern int dwrite(); /* defined in dio.c */

Also passed to dskio is the transfer address, which is the memory address used for
the disk transfer. The number of bytes to transfer is always one block (512 bytes).

In reading this code, recall that the DSKREAD and DSKWRITE subfunctions of the
DSK BIOS service require the transfer address to be ES:BX. Since the transfer address
(passed to DSKREAD and loaded into BX) is an offset to the data segment DS, it is
necessary to load the ES segment register with the same value as DS prior to calling the
DSK interrupt. Dskio passes back to the calling procedure the error code returned in AH
by the DSK interrupt call. A zero return indicates no error. The dskio.asm file also con-
tains the definition of the general dskint procedure, providing access to all the DSK sub-
functions.



-- --

48 An Overview of the Machine and Run-Time Environment Chap. 2

; dskio.asm - _dskio, _dskint

include dos.asm

DSK equ 13H ; disk i/o BIOS function

dseg

; null data segment

endds

pseg

public _dskio

public _dskint

;-------------------------------------------------------------------------

; _dskio -- perform disk read/write operation

;-------------------------------------------------------------------------

; int dskio(op,buf,drive,cyl,surf,sect)

; int op; /* 2=read, 3=write */

; char *buf; /* transfer address */

; int drive; /* disk drive number */

; int cyl,surf,sect; /* (cylinder,surface,sector) disk addr */

_dskio proc near

push bp ; set up the stack frame

mov bp,sp ; stack frame pointer

pushf ; push the flags

push si

push di ; save registers

mov ah,[bp+4] ; operation code in ah

mov bx,[bp+6] ; buffer pointer in bx

mov dl,[bp+8] ; drive number in dl

mov ch,[bp+10] ; cylinder number in ch

mov dh,[bp+12] ; surface in dh

mov cl,[bp+14] ; sector number in cl

mov al,1 ; transfer one block

push ds

pop es ; set es to our data segment

int DSK ; call the DSK BIOS interrupt

mov al,ah ; error return in al

xor ah,ah ; clear upper byte

pop di

pop si ; restore registers

popf ; restore the flags



-- --

Sec. 2.6 Assembly Language Interface 49

pop bp

ret

_dskio endp

;-------------------------------------------------------------------------

; _dskint -- general access to DSK interrupt; returns flags

;-------------------------------------------------------------------------

; int dskint(r)

; union REGS *r;

_dskint proc near

push bp

mov bp,sp ; follows C calling conventions

pushf ; save flags

push si

push di ; save registers

mov si,[bp+4] ; get pointer to register structure

mov ax,[si]

mov bx,[si+2]

mov cx,[si+4]

mov dx,[si+6] ; set up registers for call

push ds

pop es ; set es to our data segment

push si

int DSK ; call the DSK BIOS interrupt

pop si ; recover register pointer

pushf ; save flags for return value

mov [si],ax

mov [si+2],bx

mov [si+4],cx

mov [si+6],dx ; return registers

pop ax ; return flags value

pop di

pop si ; restore registers

popf ; and the flags

pop bp

ret

_dskint endp

endps

end



-- --

50 An Overview of the Machine and Run-Time Environment Chap. 2

Logical sector numbers are passed to the C procedures dread and dwrite in dio.c,
which are in turn translated using the mapping given in section 2.4.5 into (cylinder, sur-
face, sector) components and passed on to dskio through an auxiliary function dio. If
dskio returns a nonzero error code, dio retries the read or write operation up to RETRY
times in hopes that the drive controller or physical disk device can recover from a tran-
sient error condition. RETRY should not be large, since transient conditions are not gen-
erally repeatable and persistent errors are not likely to go away. Both dread and dwrite
return the error code obtained from the dio call. If dio detects a sector number that is out
of range, it returns SYSERR, which is defined in the header file kernel.h. SYSERR will
be used throughout PC-Xinu as a return value indicating an error condition. We will in-
troduce kernel.h in Chapter 5.

Observe that dio is declared as LOCAL in the file dio.c. LOCAL is expanded into
the static keyword because of the macro definition in kernel.h. The only difference
between a static procedure and other procedures is that the name of the procedure is not
considered as external to the module in which it is defined. This means that the pro-
cedures dread and dwrite are accessible outside of the module dio.c, but dio is not.

/* dio.c - dread, dwrite */

#include <kernel.h>

#include <dskio.h>

LOCAL int dio();

/*------------------------------------------------------------------------

* dread -- read a sector from disk

*------------------------------------------------------------------------

*/

int dread(buf,dskno,lsn)

char *buf; /* transfer address */

int dskno; /* disk number */

int lsn; /* logical sector no. */

{
return(dio(DSKREAD,buf,dskno,lsn));

}

/*------------------------------------------------------------------------

* dwrite -- write a sector to disk

*------------------------------------------------------------------------

*/

int dwrite(buf,dskno,lsn)

char *buf; /* transfer address */

int dskno; /* disk number */

int lsn; /* logical sector no. */



-- --

Sec. 2.6 Assembly Language Interface 51

{
return(dio(DSKWRITE,buf,dskno,lsn));

}

/*------------------------------------------------------------------------

* dio -- translate logical sector numbers to physical disk addresses

*------------------------------------------------------------------------

*/

LOCAL int dio(op,buf,dskno,lsn)

int op; /* operation code */

char *buf; /* transfer address */

int dskno; /* disk number */

int lsn; /* logical sector no. */

{
int cyl,surf,sect;

int i;

int status;

if ( lsn<0 | | lsn>=NDSECT )

return(SYSERR);

sect = lsn % 9; /* sector number */

sect = ( 5*sect ) % 9; /* sector interleaving */

lsn /= 9;

surf = lsn % 2; /* surface */

lsn /= 2;

cyl = lsn; /* cylinder */

for (i=0; i<RETRY; i++)

if ( (status=dskio(op,buf,dskno,cyl,surf,sect+1)) == 0 )

break;

return (status);

}

2.7 Summary

We have reviewed the architecture of the PC computer and the 8088 processor. The
PC is a conventional microcomputer system, organized around a motherboard and bus
through which the CPU accesses memory and devices. Output (input) is performed by
writing to (reading from) ports. Interrupt-driven devices cause the CPU temporarily to
suspend the current program and to execute an interrupt service routine. The ROM BIOS
provides standard device interrupt service routines and low-level services to user pro-
grams through software interrupts. Simple devices like the keyboard and the video
display require the CPU to transfer one character at a time. More complicated devices
like disks can perform I/O a block at a time. They only need the CPU to start a block



-- --

52 An Overview of the Machine and Run-Time Environment Chap. 2

transfer. Transmission is carried out by direct memory access (DMA) where the device
uses the bus to interact directly with memory.

This chapter also reviewed the C programming language run-time environment and
calling conventions. At run-time, the text segment precedes the data segment. The data
segment contains program data, followed by the stack and heap. Procedure calls push
parameters on the stack in reverse order.

The chapter closed with low-level assembly language routines for keyboard input,
video character output, and disk read/write access. These routines illustrate software in-
terrupts as well as the interface between C and assembly language procedures.

FOR FURTHER STUDY

More information on the PC and the 8088 can be found in the vendor’s handbooks.
Myers [1978], Stone [1972], and Tanenbaum [1976] all provide general discussions of
computer architecture; Stone [1975] looks at memory addressing in more detail. These
books also review procedure calling conventions, as does Knuth [1968]. The C language
calling conventions are described by Johnson and Ritchie [1981]. The Microsoft C cal-
ling conventions are detailed in the Microsoft C Compiler User’s Guide. For Turbo C
calling conventions, see the Turbo C User’s Guide.

EXERCISES

2.1 Compare the 8088 to Digital Equipment Corporation’s PDP 11 computers. What are the
most important differences?

2.2 Find out about memory management on microprocessors like the 80286 and 80386 or a
Motorola 68000-based system. Compare these to the 8088.

2.3 Device interrupt vector addresses are called programmable if they can be changed after the
hardware has been purchased from the vendor. Why are programmable vector addresses
needed?

2.4 Because the disk interface accesses memory directly during DMA transfers, curious errors
can result. Find out what happens if you read a 512-byte block of data into a memory loca-
tion that is within 512 bytes of the highest memory address in the data segment.

2.5 Find out why and how disks are formatted into sectors.

2.6 If a disk surface contains a physical flaw, it may make one or more sectors unusable. Some
operating systems remap blocks on the disk, placing data for flawed blocks on unflawed sec-
tors. Try to discover how your favorite operating system tolerates flawed disks (if it does).

2.7 Build a stand-alone program to format disks and check for flaws. (The ROM BIOS provides
a DSK formatting subfunction.)

2.8 Find out what the keyword register means in C.



-- --

Exercises 53

2.9 Write a C program using only kgetc and kputc (together with the lower-level kbdgetc and
wtty procedures) which will read a character from the keyboard and echo it to the screen. Do
not use any other components of PC-Xinu. Analyze what happens when you enter special
characters such as Tab, Back Space, Return, Ctrl-U, and PC function key F1.

2.10 Write a C program using only the procedures described in this chapter to read a specified sec-
tor of the disk and to display the byte contents of the sector in hexadecimal and ASCII for-
mat. Do not use any other components of PC-Xinu. Read sectors from a PC-formatted disk
and analyze their contents.


