Appendix 1

A Quick Introduction to C

Cisapopular Algol-like language with features that support systems programming.
Although it cannot be explained or learned in ten minutes, a few pointers and some sim-
ple examples are usualy sufficient to provide experienced programmers with a reading
knowledge sufficient to understand the code in thisbook. A chart that explains the basics
of C syntax and semantics in terms of Pascal follows a short list of the highlights of the

language.t
1.

Types are not as strict as in Pascal. Although later versions of the language
are more strongly typed than early versions, compilers usualy alow data
types to be interchanged freely. One often sees arithmetic operations on
characters, because declaring something to be a character is an easy
(although nonportable) way of declaring a one-byte object.

There is no type Boolean. A nonzero integer is eguivaent to true; zero is
equivalent to false.

Like Pascal and PL/I, C has aggregate types array and structure (called
record in Pascal). Unlike many languages, C has no notion of files.

C procedure declarations may not be nested, so it is not block-structured in
the Algol, Pascal, or PL/I sense.

C does not distinguish procedures from functions. All procedures return a
value; if the programmer does not specify one, the vaue returned will be
nonsense. The calling program can ignore the returned value by invoking a
procedure in a single statement or can use the returned value by invoking the
procedure in an expression.

C supports recursive procedure calls.

The C syntax is concise. C uses left and right braces in place of PL/I's do
end or Pascal’ s begin end.

Brackets [] denote subscripting, and parentheses () denote procedure calls.
If X isthe name of an array, then X[i] refers to element i, but the name x used
without subscripts refers to the address of the first element (i.e., the address

‘tFor more details about C consult Kernighan and Ritchie [1978].

421

422

10.

11.

12.

13.

14.

15.

Operating System Design

of x[Q]). Similarly, a procedure name that appears without parentheses fol-
lowing refers to the address of the code for the procedure. Subscripts for an
array of N elements range from 0 through N-1.

C has an extensive and powerful set of operators including such functions as
bit-wise shift, and, or, complement, and exclusive or. Operators are often
denoted by one or two specia characters. Even operators that have side-
effects return functional values. For example, the assignment operator as-
signs its right-hand operand to its |eft-hand operand and returns the value as-
signed asin APL. Some surprises. = denotes assignment, == denotes test for
equality, != denotes test for inequality, *x denotes whatever x points to, x++
has the same value as x, but it has the side-effect of incrementing x after it
has been accessed, ++x means first increment x and then return its new
value.

C dlows arithmetic on pointers, where the type of the pointer determines
how the new address is computed. If x points to an object of size y bytes,
then x+1 points to the ‘‘next’’ occurrence of the object (i.e., produces an ad-
dress that is equivalent to adding y to the integer value of x).

Pointer arithmetic and array subscripting in C are curiously related. By de-
finition, x[a means ‘‘add’’ ato x, where addition is performed according to
the rules of pointer arithmetic. The definition happens to make aXx]
equivalent to x[a] if ais an integer and x is an array. It also means that if p
points to x[5] then p+1 points to x[6] (provided p is declared to be a pointer
to the type of object in x). Unfortunately, many C programs contain cryptic
code that ‘‘walks'’ through an array by assigning a pointer the starting ad-
dress and incrementing the pointer with ++.

Semicolons are statement terminators; they follow every statement except for
compound statements. Like PL/I, but unlike Pascal, semicolonsin C precede
the keyword else. A semicolon by itself isanull statement.

The C macro preprocessor handles parameterized macros, alowing in-line
expansion of code and substitution of symbolic constants in the program.
The macro facility, which aso provides for source file inclusion, is less
powerful than that of PL/I, but more powerful than the const facility in Pas-
cal. By convention, the names of symbolic constants are written in upper
case; other names are written in lower case. Constants and data used by
more than one source program are usually declared in a separate file and in-
cluded in the source program at compile time. By convention, the names of
included filesend in**.h’" (for header).

C supports separate compilation of procedures. In declarations, the keyword
static limits the visibility of the declared name to the currently compiled file,
providing away to group procedures and data so that only selected names are
visible in the rest of the program. Whenever a procedure is loaded, the
loader includes all procedures and data that were compiled with it.

The keyword extern makes a declaration refer to an external object; al refer-
ences to a given external name refer to the same object independent of the

App.1

16.

17.

18.
19.

A Quick Introductionto C 423

file in which the declaration occurred (like external variables in PL/I or
named common in FORTRAN). Declaring an object to be external merely
instructs the compiler to generate code to reference it as such; the actual de-
finition of storage for an external object is made by writing a declaration out-
side of the scope of a procedure. External objects must be defined once no
matter how many times they are declared.

In C, data can be initialized at compile time; by default, the initial value of an
external data object is zero.

Unlike the Pascal case statement that selects one out of n statements (i.e,, is
an n-way conditional), the C switch statement is merely an n-way branch.
The switch expression is evaluated and control transfers to one of n branch
points (called cases) as expected; but after the transfer, execution continues
falling though case after case until the program explicitly branches out of the
switch statement. The usual way to branch out is with a break statement,
which causes flow of control to pass to the statement following the switch.
Switch statements can include a default |abel, equivaent to otherwise in some
diaects of Pascal. Control passes to the default if no other caseistrue.
Comments start with *‘/**" and end with the next ***/"” asin PL/I.

Identifiers can contain letters, digits, or underscores; they must begin with a
letter or an underscore.

The following chart explains specific constructs in C by giving their equivalent in
Pascal. Notice, in particular, the powerful for statement, the array subscripting (which
extends from 0 through N-1, not 1 through N), and the unusual declaration syntax.

424

Operating System Design

C construct explanation Pascal equivalent
inta; declarations: integer var a integer;
char b; character var b: char;
char *c; pointer to character var c: 1 char;
int (*x)(); pointer to procedure -none-
that returns integer
char d[10]; array of characters var d: array[0..9] of char;
char €[10][12]; 2-dimensional array var e array[0..9,0..11] of char;
char *f[5] array of pointers var f: array[0..4] of 1 char;
char **g; pointer to pointer var g: 1 1 char;
a character constant d
014 character constant -none-
with value 014 (octal)
"abc" string constant -none-
Array of contiguous (some Pascal compilers
characters terminated by use’...))
anull byte(i.e, 'da,
'b’,’c’,’\0"). Newline
and tab denoted by \n
and \t. Vaueisthe
the address of the first
character
123 decimal constant 123
0123 octa constant -none- (decimal valueis 83)
(has leading zero)
0x123 hexadecimal constant -none- (decimal valueis 291)
struct x { structure (record) X = record
int f1; declaration with f1: integer;
char f2; fieldsfl and f2 f2: char
} end
struct x y[2]; y isarray of struct x var y: array[0..1] of x;
#define A v symbolic constant const A =v;
#define A(X) v(x) | parameterized macro -none-
#ifdef A conditional compilation -none-
X code X iscompiled only
#endif if symbol A defined
#ifndef A negative conditional -none-
X compilation; X compiled
#endif only if A not defined

App. 1 A Quick Introductionto C 425
C Construct explanation Pascal equivalent
#include src source file inclusion -none-
(if srcis"path” then
path isrelative to
current directory; if
<path> then relative
to system directory)

= assignment operator =

+-* arithmetic operators +-*

/ division (C does integer / div
division on integers)

% modulus or remainder -none-

var op= exp operation and var = var op exp
assignment

v+=9 example: add 9 Vi=v+9
tovariable v

== test equality =

I= test inequality <>

> test greater than >

< test less than <

<= test less than or equal <=

>= test greater than or equal >=

*X pointer dereference X1
(whatever x pointsto)

sizeof(x) size of data object -none-
X in bytes

&X address of object x (when -none-
used as a unary operator)

& bitwise and (when used as -none-
binary operator)

| bitwise or -none-

- bitwise (1's) complement -none-

&& Boolean and and

| Boolean or or

! Boolean not not
(&& and | | are evaluated (Pascal does
left-to-right with early not use early
termination) termination)

x[i]

array reference

X[i]

426

Operating System Design

C construct explanation Pascal equivalent
sf referenceto field f in sf
structure s
p—>f referencetofieldf in pt.f
structure pointed to by p
e?a:b conditional expression -none-
(if eisnonzero, valueis
aelsevaueish)
++X preincrement X:=x+1
X++ postincrement X:=x+1
-—X predecrement X:=x-1
X—= post decrement X:=x-1
(when used in an expression
++X refers to the value of
x after incrementing; x++
refers to the value before
incrementing)
p(el,e2,....en) procedure invocation p(el,e2,....en)
while (exp) S, indefinite iteration whileexp<>0do S
if (exp) S; conditional if exp<>0then S
if (exp) S1; 2-way conditional if exp<>0then S1
else S2; else S2
{S1;32;...;Sn;} compound statement begin S1;S2;...; Snend

(note semicolons)

for(S1;exp; S2) indefinite iteration S,
S3; with initialization whileexp <> 0do
and reinitialization begin
(S1, exp and S2 are S3;
optional — if expis 2
omitted, infinite loop end
results)
return procedure return finish executing procedure
return(exp) return exp to caler function name := exp;
as function value finish executing function
name(formals) procedure declaration procedure name(formals);
declaration of formals declaration of locdls;
begin
declaration of
local variables; statements
statements
} end,

App.1 A Quick Introductionto C 427
C construct explanation Pascal equivalent
type name(formals) function declaration function name(formals) : type;

declaration of formals

{

declaration of
local variables;
statements

}

declaration of locals;
begin

Statements

end;

for(i=0; i<N ; i++)

X[i]...

typical loop to search
array X, assuming X
hassize N

fori:=1toN do
X[

*X++

idiomatic expression for
pointer X: itsvalueis
whatever x pointsto; X
isincremented after the
reference according to
pointer arithmetic

-none-

(type)exp

1+ (int) &x

type casting

the type of expression
exp is changed.
Example: make the
address of x an
integer before adding
ltoit (i.e, use
integer, not pointer,
arithmetic)

-hone-

I*..*l

Comment

(*..*)or{..}

