
11

Device Independent Input
and Output

Operating systems control input and output (I/O) devices for three reasons. First,
the hardware interface to most devices is relatively crude, requiring complex software to
control and use them. The operating system hides these details in routines called device
drivers through which programs transfer data and control the device. Second, devices
are shared resources, protected and allocated by the operating system according to poli-
cies that make access fair and safe. Third, the operating system provides a consistent,
uniform, and flexible interface to all devices, allowing users to write programs that refer-
ence devices by name and perform high-level operations without knowing about the
machine configuration. This chapter begins by looking at how a set of high-level primi-
tives might be selected and proceeds to describe the data structures used to relate them to
specific devices.

The choice of abstract input and output operations is not easy because goals like
flexibility, simplicity, and generality tend to dictate contradictory designs. Any design
will be an iterative process in which the designer chooses a set of primitives, maps device
operations into them, and revises the choice as problems arise. However, the design pro-
cess can be organized into roughly three steps that can be followed without many itera-
tions. First: generate a list of desirable properties. Second: derive a set of high-level
primitives, and explain the purpose of each by giving their meaning with respect to
specific classes of devices (e.g., terminals, disks, etc.). Third: build software that maps
an abstract device onto some particular instance of that device.

165

-- --

166 Device Independent Input and Output Chap. 11

11.1 Properties Of The Input And Output Interface

What properties should I/O systems exhibit? Perhaps the most important design is-
sue is synchrony: should processes block while performing I/O operations, or should they
continue executing and be notified (somehow) when the operation completes. I/O sys-
tems that allow processes to initiate an operation and then to continue execution are
called asynchronous; they are useful in a concurrent programming environment, espe-
cially when the user wants to control the overlap of computation and I/O. Those systems
that delay input operations until the data arrives and delay output operations until the data
has been consumed are called synchronous. They follow the pattern established in most
high-level languages, and users generally prefer them. Synchronous I/O systems guaran-
tee that the user can depend on data immediately after an input operation and can change
data immediately after an output operation. Because it is easier to use, and because it
seems to suffice for most applications, our design will use synchronous I/O.

The format of data and size of transfers is another issue that affects I/O system
design. The question to ask is: ‘‘Will data be transferred in blocks or bytes, and if in
blocks, of what size and what form?’’ These questions are difficult to answer because
some devices work with single bytes while others operate on blocks of data − it may
depend on the hardware that the system uses. A general purpose system, one that may be
connected to a variety of I/O devices in a variety of configurations, will probably need
both single-byte transfers as well as block transfers. Thus, our design will include both.

Finally, issues like efficiency, generality, portability, and simplicity arise. These
can be ignored for now, but may ultimately force changes in the design. We will see in
Chapter 16, for example, that lower-levels of the disk I/O software operate asynchro-
nously.

11.2 Abstract Operations

Once a basic set of properties has been developed, a set of abstract I/O operations
can be derived. Experience with other systems may be as important in helping to choose
abstract operations as anything else. There are nine abstract operations designed for PC-
Xinu: getc, putc, read, write, control, seek, open, close, and init. Throughout the rest of
the book, we will refer to them as the I/O primitives.

Each primitive has a meaning, loosely defined as follows. Getc and putc deal with
single character transfers, receiving from the device or sending to it. Read and write do
the same for one or more characters transferred to a contiguous block of memory. Con-
trol allows a user to control the device or the device driver, with seek being a special case
of control that applies to randomly accessible storage devices. Open and close allow the
user to inform the device that data transfer will begin or that it has ended. These may be
useful, for example, to return the device to an idle state when it is not needed. Finally,
init initializes the device and driver at system startup.

-- --

Sec. 11.2 Abstract Operations 167

Consider, for example, how these abstract routines apply to the ‘‘console.’’ Getc
reads the next character from the keyboard, and putc displays one character on the
screen. Write displays several characters with one call, and read reads a specified
number of characters (or all that have been typed, depending on its arguments). Finally,
control allows the program to change parameters in the driver to control such things as
whether the system echoes each character as it is typed.

11.3 Binding Abstract Operations To Real Devices

The system maps high-level I/O operations like those described above into calls to
specific device drivers. In so doing, it hides hardware and device driver details (e.g., that
the keyboard and video display are actually independent devices), making programs in-
dependent of the hardware configuration. In one sense, these high-level calls comprise
the environment that the system presents to running programs − the programs only per-
ceive peripheral devices through these abstract primitives.

In addition to mapping abstract I/O operations onto driver routines, the system must
map abstract names like CONSOLE onto real devices. Each system has its own mapping
scheme; uniformity is not the rule. Some require the programmer to know about devices
when writing the program. Others require the command interpreter to link names used in
the program with real devices. Still others perform the linkage dynamically, allowing a
running process to change the correspondence.

As a general rule, the later a system binds the names of abstract devices and abstract
operations to real devices and device drivers, the more flexible it is. Programs that have
device addresses and driver calls bound at compile-time are obviously impractical be-
cause they must be changed whenever the hardware device or address is altered, no
matter how minor the change. At the other extreme, programs that bind names late usu-
ally incur more computational overhead − they are not as practical in small systems. So,
the essence of the design problem consists of synthesizing a binding mechanism that al-
lows maximum flexibility within the required performance bounds.

This chapter suggests a design which compromises between late binding and effi-
ciency in a manner typical of many existing systems. Coded into the system is the device
name, a description of each abstract device, the device driver routines it uses, and the ad-
dress of a real device to which it corresponds. The system must be altered and recom-
piled when a new device is added or when existing device addresses are modified.
User’s programs, however, contain no direct calls to device drivers and no device ad-
dresses; they need not be recompiled as long as the abstract device descriptors do not
change. As a consequence, simple programs that only execute I/O operations on the
CONSOLE work on almost any PC-Xinu configuration, independent of the physical con-
sole device, its hardware interface, or its hardware address.

-- --

168 Device Independent Input and Output Chap. 11

11.4 Binding I/O Calls To Device Drivers At Run-Time

At some point, routines like read must map abstract device descriptors like CON-
SOLE to device driver routines and specific device addresses. Both the technicalities of
how the mapping is performed, as well as the source of information about which devices
the system contains, are important.

In PC-Xinu, each abstract device is assigned an integer device descriptor when the
system is configured. By convention, the CONSOLE device has the same device descrip-
tor in all Xinu systems. In addition, each device is assigned a unique name, which is a
string of up to 7 characters. Based on the results of configuration, device descriptors and
names are bound into the system when it is compiled. The system need not be recom-
piled unless the configuration changes (e.g., a new device is added). Once the system
has been configured, any number of programs can be compiled. These programs address
devices by name, and the compiler is able to map names to the correct device descriptors
based on the configuration information.

At run-time the program calls high-level I/O routines like read or putc, passing the
device descriptor as an argument. The high-level I/O routines use the device descriptor
as an index into a table called the device switch table. The device switch maps each dev-
ice descriptor into a real device address and appropriate driver routines. The high-level
routine then calls the driver to carry out the operation.

A look at the definition of the device switch table, devtab, should clarify the details.
It can be found in file conf.h. Structure devsw, declared in the same file, defines the for-
mat of entries in the device switch table.

/* conf.h */

/* (GENERATED FILE; DO NOT EDIT) */

#define NULLPTR (char *)0

/* Device table declarations */

struct devsw { /* device table entry */

int dvnum;

char dvnam[10];

int (*dvinit)();

int (*dvopen)();

int (*dvclose)();

int (*dvread)();

int (*dvwrite)();

int (*dvseek)();

int (*dvgetc)();

int (*dvputc)();

int (*dvcntl)();

int dvport;

int dvivec;

-- --

Sec. 11.4 Binding I/O Calls To Device Drivers At Run-Time 169

int dvovec;

int (*dviint)();

int (*dvoint)();

char *dvioblk;

int dvminor;

};

extern struct devsw devtab[]; /* one entry per device */

/* Device name definitions */

#define CONSOLE 0 /* type tty */

#define DS0 5 /* type dsk */

#define DOS 11 /* type dos */

/* Control block sizes */

#define Ntty 5

#define Ndsk 1

#define Ndf 5

#define Ndos 1

#define Nmf 4

#define NDEVS 16

/* Declarations of I/O routines referenced */

extern int ioerr();

extern int ttyinit();

extern int ttyopen();

extern int ttyread();

extern int ttywrite();

extern int ttygetc();

extern int ttyputc();

extern int ttycntl();

extern int ttyiin();

extern int lwinit();

extern int ionull();

extern int lwclose();

extern int lwread();

extern int lwwrite();

extern int lwgetc();

extern int lwputc();

extern int lwcntl();

-- --

170 Device Independent Input and Output Chap. 11

extern int dsinit();

extern int dsopen();

extern int dsread();

extern int dswrite();

extern int dsseek();

extern int dscntl();

extern int lfinit();

extern int lfclose();

extern int lfread();

extern int lfwrite();

extern int lfseek();

extern int lfgetc();

extern int lfputc();

extern int msopen();

extern int mscntl();

extern int mfinit();

extern int mfclose();

extern int mfread();

extern int mfwrite();

extern int mfseek();

extern int mfgetc();

extern int mfputc();

/* Configuration and size constants */

#define MEMMARK /* enable memory marking */

#define NPROC 30 /* number of user processes */

#define NSEM 100 /* total number of semaphores */

#define VERSION "6pc (1-Dec-87)" /* label printed at startup */

Each entry in devtab corresponds to a single device; it contains the device name, the
addresses of the device driver routines for that device, the device port and vector ad-
dresses, and miscellaneous other information used by the drivers. Fields dvgetc, dvputc,
dvread, dvwrite, dvcntl, dvseek, and dvinit hold the addresses of driver routines
corresponding to the high-level operations. Knowing the addresses of driver routines is
not enough, however, because more than one device can use the same driver routine. So,
the device switch table contains fields for the hardware port address (dvport), interrupt
vector addresses (dvivec and dvovec), and interrupt dispatch routines (dviint and dvoint),
as well as a buffer pointer (dvioblk), and an integer to distinguish among multiple copies
of a device (dvminor). The minor device number is especially important for multiplexors
that control a set of identical devices through a single hardware interface.

-- --

Sec. 11.5 The Implementation Of High-Level I/O Operations 171

11.5 The Implementation Of High-Level I/O Operations

Because the device switch table isolates high-level I/O operations from underlying
details, it allows high-level procedures to be completed before device drivers. One of the
chief benefits of such a strategy is that it allows the designer to build and test subsets of
the I/O system.

There is a procedure for each of the abstract operations getc, putc, read, etc. This
section describes the C implementation of these high-level routines and shows how they
call low-level device drivers indirectly through the device switch table. For example, the
C code in file read.c implements the read operation.

/* read.c - read */

#include <conf.h>

#include <kernel.h>

#include <io.h>

/*--

* read -- read one or more bytes from a device

*--

*/

read(descrp, buff, count)

int descrp, count;

char *buff;

{
struct devsw *devptr;

if (isbaddev(descrp))

return(SYSERR);

devptr = &devtab[descrp];

return((*devptr->dvread)(devptr,buff,count));

}

A program calls read, and passes as arguments the device descriptor, the address of a
buffer into which data should be read, and a count of the number of characters to read.
Procedure read uses the device descriptor descrp, as an index into devtab, and calls the
driver routine given by field dvread. It passes the driver three arguments: the address of
the devtab entry (devptr), the buffer address (buff) and a count of characters to read
(count).

The remaining high-level routines operate in the same way as read. They are shown
below.

-- --

172 Device Independent Input and Output Chap. 11

/* control.c - control */

#include <conf.h>

#include <kernel.h>

#include <io.h>

/*--

* control -- control a device (e.g., set the mode)

*--

*/

control(descrp, func, addr, addr2)

int descrp, func;

char *addr,*addr2;

{
struct devsw *devptr;

if (isbaddev(descrp))

return(SYSERR);

devptr = &devtab[descrp];

return((*devptr->dvcntl)(devptr, func, addr, addr2));

}

/* getc.c - getc */

#include <conf.h>

#include <kernel.h>

#include <io.h>

/*--

* getc -- get one character from a device

*--

*/

getc(descrp)

int descrp;

{
struct devsw *devptr;

if (isbaddev(descrp))

return(SYSERR);

devptr = &devtab[descrp];

return((*devptr->dvgetc)(devptr));

}

-- --

Sec. 11.5 The Implementation Of High-Level I/O Operations 173

/* init.c - init */

#include <conf.h>

#include <kernel.h>

#include <io.h>

/*--

* init -- initialize a device

*--

*/

init(descrp)

int descrp;

{
struct devsw *devptr;

if (isbaddev(descrp))

return(SYSERR);

devptr = &devtab[descrp];

return((*devptr->dvinit)(devptr));

}

/* putc.c - putc */

#include <conf.h>

#include <kernel.h>

#include <io.h>

/*--

* putc -- write a single character to a device

*--

*/

putc(descrp, ch)

int descrp;

char ch;

{
struct devsw *devptr;

if (isbaddev (descrp))

return(SYSERR);

devptr = &devtab[descrp];

return((*devptr->dvputc)(devptr,ch));

}

-- --

174 Device Independent Input and Output Chap. 11

/* seek.c - seek */

#include <conf.h>

#include <kernel.h>

#include <io.h>

/*--

* seek -- position a device (very common special case of control)

*--

*/

seek(descrp, pos)

int descrp;

long pos;

{
struct devsw *devptr;

if (isbaddev(descrp))

return(SYSERR);

devptr = &devtab[descrp];

return((*devptr->dvseek)(devptr,pos));

}

/* write.c - write */

#include <conf.h>

#include <kernel.h>

#include <io.h>

/*--

* write -- write 1 or more bytes to a device

*--

*/

write(descrp, buff, count)

int descrp, count;

char *buff;

{
struct devsw *devptr;

if (isbaddev(descrp))

return(SYSERR);

devptr = &devtab[descrp];

return((*devptr->dvwrite)(devptr,buff,count));

}

-- --

Sec. 11.5 The Implementation Of High-Level I/O Operations 175

11.6 Translating Device Names Into Descriptors

Since the high-level operations described above require integer device descriptors to
identify devices, there must be a way to map the device name into its descriptor. We
could have written the high-level operations to use device names rather than descriptors,
but the overhead to look up the device name at each call would be prohibitive.

The procedure getdev provides a means to translate a device name into a descriptor.
Getdev is passed the address of a string and returns the device descriptor of the
corresponding device, or SYSERR, if no device is found with the corresponding name.
Getdev will usually be called only once for a device accessed by a program; the remain-
ing access to the device will be through its device descriptor.

/* getdev.c - getdev */

#include <conf.h>

#include <kernel.h>

/*--

* getdev -- get the device number from a character string name

*--

*/

int getdev(cp)

char *cp;

{
int i;

for (i=0; i<NDEVS; i++)

if (strcmp(cp,devtab[i].dvnam) == 0)

return(i);

return(SYSERR);

}

11.7 Opening And Closing Devices

Some disk devices require the programs to start them before performing a transfer
operation and to stop them when the transfer completes. Although control can be used in
such situations, it is sometimes helpful to have more meaningfully named procedures to
start up and shut down a device. Open and close serve this purpose. The code is again
similar to that of the other high-level I/O routines:

-- --

176 Device Independent Input and Output Chap. 11

/* close.c - close */

#include <conf.h>

#include <kernel.h>

#include <io.h>

/*--

* close -- close a device

*--

*/

close(descrp)

int descrp;

{
struct devsw *devptr;

if (isbaddev(descrp))

return(SYSERR);

devptr = &devtab[descrp];

return((*devptr->dvclose)(devptr));

}

/* open.c - open */

#include <conf.h>

#include <kernel.h>

#include <io.h>

/*--

* open -- open a connection to a device/file (arg1 & arg2 optional)

*--

*/

open(descrp, arg1, arg2)

int descrp;

char *arg1, *arg2;

{
struct devsw *devptr;

if (isbaddev(descrp))

return(SYSERR);

devptr = &devtab[descrp];

return((*devptr->dvopen)(devptr, arg1, arg2));

}

-- --

Sec. 11.7 Opening And Closing Devices 177

11.8 Null And Error Entries In Devtab

High level routines like read and write use the entries in devtab without checking to
see that they are valid. Thus, a driver address must be supplied for every operation and
every device, or catastrophe may result (e.g., branch to zero). However, not all combina-
tions of operations and devices are meaningful. For example, seek is not an operation
that can be performed on the ctrl-break device. How can such devtab entries be filled in?

Two routines, ioerr and ionull, serve to fill in otherwise empty entries of devtab .
Procedure ioerr simply returns SYSERR whenever it is called; procedure ionull always
returns OK. By convention, entries filled with ioerr should never be called; they signify
an illegal operation. Entries for unnecessary, but otherwise innocuous operations (like
open for the real-time clock device), point to procedure ionull. The code for these rou-
tines is trivial.

/* ioerr.c - ioerr */

#include <conf.h>

#include <kernel.h>

/*--

* ioerr -- return an error (used for "error" entries in devtab)

*--

*/

ioerr()

{
return(SYSERR);

}

/* ionull.c - ionull */

#include <conf.h>

#include <kernel.h>

/*--

* ionull -- do nothing (used for "don’t care" entries in devtab)

*--

*/

ionull()

{
return(OK);

}

-- --

178 Device Independent Input and Output Chap. 11

11.9 Initialization Of The I/O System

We have seen: how the hardware uses the address in an interrupt vector location to
locate the interrupt dispatch routine; how the interrupt dispatch routines use the interrupt
dispatch table, intmap, and the common interrupt-handling code, intcom, to locate and
execute the appropriate high-level interrupt routine; and how I/O system calls like read
use devtab to map device descriptors into drivers when programs perform I/O operations.
The question that remains is how these tables and interrupt vectors are initialized in the
first place.

Devtab contains the entire system I/O configuration and is used when the system is
compiled. The values in devtab vary from configuration to configuration, but a sample
can be found in file conf.c:

/* conf.c */

/* (GENERATED FILE: DO NOT EDIT) */

#include <conf.h>

#include <bios.h>

/* device independent I/O switch */

struct devsw devtab[NDEVS] = {

/*--

* Format of each entry is:

*

* device number, device name,

* init, open, close,

* read, write, seek,

* getc, putc, cntl,

* port addr, device input vector, device output vector,

* input interrupt routine, output interrupt routine,

* device i/o block, minor device number

*--

*/

/* CONSOLE is tty on BIOS */

0,"tty",

ttyinit,ttyopen,ioerr,

ttyread,ttywrite,ioerr,

ttygetc,ttyputc,ttycntl,

0,KBDVEC| BIOSFLG,0,
ttyiin,ioerr,

-- --

Sec. 11.9 Initialization Of The I/O System 179

NULLPTR,0,

/* GENERIC is tty on WINDOW */

1,"",

lwinit,ionull,lwclose,

lwread,lwwrite,ioerr,

lwgetc,lwputc,lwcntl,

0,0,0,

ioerr,ioerr,

NULLPTR,1,

/* GENERIC is tty on WINDOW */

2,"",

lwinit,ionull,lwclose,

lwread,lwwrite,ioerr,

lwgetc,lwputc,lwcntl,

0,0,0,

ioerr,ioerr,

NULLPTR,2,

/* GENERIC is tty on WINDOW */

3,"",

lwinit,ionull,lwclose,

lwread,lwwrite,ioerr,

lwgetc,lwputc,lwcntl,

0,0,0,

ioerr,ioerr,

NULLPTR,3,

/* GENERIC is tty on WINDOW */

4,"",

lwinit,ionull,lwclose,

lwread,lwwrite,ioerr,

lwgetc,lwputc,lwcntl,

0,0,0,

ioerr,ioerr,

NULLPTR,4,

/* DS0 is dsk on BIOS */

5,"ds0",

dsinit,dsopen,ioerr,

dsread,dswrite,dsseek,

ioerr,ioerr,dscntl,

0,0,0,

-- --

180 Device Independent Input and Output Chap. 11

ioerr,ioerr,

NULLPTR,0,

/* GENERIC is df on DSK */

6,"",

lfinit,ioerr,lfclose,

lfread,lfwrite,lfseek,

lfgetc,lfputc,ioerr,

0,0,0,

ioerr,ioerr,

NULLPTR,0,

/* GENERIC is df on DSK */

7,"",

lfinit,ioerr,lfclose,

lfread,lfwrite,lfseek,

lfgetc,lfputc,ioerr,

0,0,0,

ioerr,ioerr,

NULLPTR,1,

/* GENERIC is df on DSK */

8,"",

lfinit,ioerr,lfclose,

lfread,lfwrite,lfseek,

lfgetc,lfputc,ioerr,

0,0,0,

ioerr,ioerr,

NULLPTR,2,

/* GENERIC is df on DSK */

9,"",

lfinit,ioerr,lfclose,

lfread,lfwrite,lfseek,

lfgetc,lfputc,ioerr,

0,0,0,

ioerr,ioerr,

NULLPTR,3,

/* GENERIC is df on DSK */

10,"",

lfinit,ioerr,lfclose,

lfread,lfwrite,lfseek,

lfgetc,lfputc,ioerr,

-- --

Sec. 11.9 Initialization Of The I/O System 181

0,0,0,

ioerr,ioerr,

NULLPTR,4,

/* DOS is dos on MSDOS */

11,"dos",

ionull,msopen,ioerr,

ioerr,ioerr,ioerr,

ioerr,ioerr,mscntl,

0,0,0,

ioerr,ioerr,

NULLPTR,0,

/* GENERIC is mf on DOS */

12,"",

mfinit,ioerr,mfclose,

mfread,mfwrite,mfseek,

mfgetc,mfputc,ioerr,

0,0,0,

ioerr,ioerr,

NULLPTR,0,

/* GENERIC is mf on DOS */

13,"",

mfinit,ioerr,mfclose,

mfread,mfwrite,mfseek,

mfgetc,mfputc,ioerr,

0,0,0,

ioerr,ioerr,

NULLPTR,1,

/* GENERIC is mf on DOS */

14,"",

mfinit,ioerr,mfclose,

mfread,mfwrite,mfseek,

mfgetc,mfputc,ioerr,

0,0,0,

ioerr,ioerr,

NULLPTR,2,

/* GENERIC is mf on DOS */

15,"",

mfinit,ioerr,mfclose,

mfread,mfwrite,mfseek,

-- --

182 Device Independent Input and Output Chap. 11

mfgetc,mfputc,ioerr,

0,0,0,

ioerr,ioerr,

NULLPTR,3

};

11.10 Interrupt Vector Initialization

The interrupt vectors and interrupt dispatch table are initialized at run-time, based
on information in devtab. Each nonzero vector entry in devtab (either dvivec or dvovec)
has a corresponding entry in the intmap table. The intmap entries are filled in when the
system is initialized, by calling the mapinit procedure. Mapinit is passed the interrupt
type, the address of the new interrupt service routine to be installed in the intmap table,
and the minor device number of the device. (The minor device number will be passed to
the interrupt service routine at each interrupt call.) The interrupt flag, which was dis-
cussed in Chapter 9, occupies the high byte of the interrupt type. Note how the old inter-
rupt service routine segment : offset address is extracted from the vector and saved in the
oldisr positions in the intmap entry, and the address of the call to intcom − which is one
byte after the beginning of the intmap table entry − is installed in the vector.

The maprestore procedure is called when PC-Xinu terminates. It undoes the work
performed by mapinit by restoring all the device vectors in the intmap table to their saved
states.

/* map.c - mapinit, maprestore */

#include <dos.h>

#include <conf.h>

#include <kernel.h>

#include <io.h>

/*--

* mapinit -- fill in an intmap table entry

*--

*/

int mapinit(vec,newisr,mdevno)

int vec; /* interrupt vector no. */

int (*newisr)(); /* addr. of new service routine */

int mdevno; /* minor device number */

{
int i; /* intmap entry */

word far *addr; /* far address pointer */

struct intmap far *imp; /* pointers to intmap */

int flag; /* upper byte of vector */

-- --

Sec. 11.10 Interrupt Vector Initialization 183

i = nmaps;

if (i >= NMAPS)

return(SYSERR);

nmaps++;

imp = &sys_imp[i]; /* point to our intmap entry */

flag = (vec>>8) & 0xff; /* pick up flag byte */

vec = vec & 0xff; /* only low-order byte counts */

FP_SEG(addr) = 0; /* interrupts are on page 0 */

FP_OFF(addr) = vec * 4; /* offset of this interrupt no. */

/* set up the input intmap entry */

imp->iflag = flag; /* deposit flag byte in iflag */

imp->oldisr_off = *addr; /* offset */

imp->oldisr_seg = *(addr + 1); /* segment */

/* the following is highly machine dependent */

addr = FP_OFF(imp)+1; / point to call instruction */

(addr+1) = FP_SEG(imp); / this code segment */

imp->newisr = newisr; /* our input handler */

imp->mdevno = mdevno; /* minor device no. */

imp->ivec = (char) vec; /* interrupt vector */

return(OK);

}

/*--

* maprestore -- restore all old interrupt vectors from the intmap

*--

*/

int maprestore()

{
int i; /* intmap entry number */

word far *addr; /* far address pointer */

struct intmap far *imp; /* pointers to intmap */

if (nmaps > NMAPS)

nmaps = NMAPS; /* just to be sure */

for (i=0; i<nmaps; i++) {
imp = &sys_imp[i]; /* point to this intmap entry */

if ((int)(imp->newisr) == -1)

continue; /* if unused entry */

FP_SEG(addr) = 0; /* interrupts are on page 0 */

FP_OFF(addr) = imp->ivec * 4; /* offset to the vector */

addr = imp->oldisr_off; / offset */

-- --

184 Device Independent Input and Output Chap. 11

(addr+1) = imp->oldisr_seg; / segment */

}
}

At the same time the system is building the intmap table, the device initialization
routine init(k) is called for each device k. This initialization routine, thought of as part of
the device driver, usually initializes any control blocks or buffers associated with the
device. It may also test the device, enable device interrupts, or reset the hardware in oth-
er ways as required. Part of this initialization depends on the driver and the device, but
because so many devices initialize the interrupt vectors and dispatch table, building a
standard high-level initialization routine is worthwhile.

11.11 Summary

The operating system provides a high-level environment to user programs by hiding
the details of peripheral devices under a layer of device-independent I/O routines. User
programs access devices by name using the high-level operations getc, putc, read, write,
control, seek, open, and close. In our design, the I/O system operates synchronously, de-
laying the calling process until data has been transferred.

To keep device information in user’s programs independent of hardware devices
and addresses, the system binds abstract names to integer device descriptors. It binds
descriptors to specific devices at run-time using a device switch table. The device switch
table contains one entry for each device; the entry includes information like the device’s
hardware address as well as the set of driver routines that control the device. High level
I/O operations, like read or write, access the device switch table to determine the driver
routine that performs the operation on the specified device. Individual drivers interpret
these calls in a way meaningful to the particular device; if an operation makes no sense
when applied to a particular device, the system calls a routine that returns an error code.

One field of the device switch table specifies an initialization routine that the system
calls at startup. Usually this initialization fills in the device control block, initializes
buffers, and carries out any device-specific activities.

FOR FURTHER STUDY

The ideas of blocking I/O, most of the general I/O primitives, and the device switch
table are not new. Although pieces can be found in several systems, the set described
here came mostly from UNIX (Ritchie and Thompson [1974]). Two earlier systems that
contributed to these ideas are Multics (Corbato [1972]) and CTSS (Crisman [1965]).

-- --

Exercises 185

EXERCISES

11.1 Identify the set of I/O operations available on various operating systems.

11.2 Find a system that uses asynchronous I/O, and identify the mechanism by which a running
program is notified when the operation completes. Which system would you rather use?

11.3 There is a difference between the binding of device names to device descriptors and the
binding of device descriptors (e.g., 0) to real hardware devices. Compare the two bindings
in PC-Xinu with bindings in other operating systems.

11.4 Assume that in the course of debugging you begin to suspect that a program is incorrectly
calling high-level routines like open and seek on devices for which they make no sense.
Make a quick change to catch I/O errors, printing the process id of the offending process.
(Do not recompile the I/O system calls until you have tried other approaches.)

11.5 In one version of Xinu, ioinit, ionull, and ioerr were bound together in the same object
file, making it impossible to load one without the others. Explain why separating them is
a good idea.

11.6 Write the inverse of getdev, i.e., a procedure which is passed a device descriptor and re-
turns a pointer to name of the device.

