
6

Process Coordination

Independent processes use coordination primitives to synchronize their actions and
to cooperate in sharing resources. Chapter 1 introduced counting semaphores, the basic
process coordination mechanism in PC-Xinu and gave examples of their use. In one ex-
ample, two processes coordinated to guarantee that the ‘‘consumer’’ received every
value emitted by the ‘‘producer.’’ In another example, a set of processes used a sema-
phore to obtain exclusive access to a data structure they shared.

Semaphores are perhaps the easiest process coordination primitives to understand
and implement. Conceptually, each semaphore, s, consists of an integer count.
Processes call wait(s) to decrement its count and signal(s) to increment it. If the sema-
phore count becomes negative when a process executes wait(s), that process is delayed.
From the point of view of the process, the call to wait just does not return for a while. A
delayed process becomes ready to run again each time signal is called. If no process ever
calls signal, the delayed process continues to wait forever.

Exactly how does procedure wait delay its caller? It is important to remember that
even though processes run concurrently, we are discussing a system that usually executes
on a single processor. A process cannot execute instructions while waiting without
depriving other processes of CPU service. For example, waiting that involves testing a
memory location in a tight loop is dangerous − if the CPU spends all its time executing
the ‘‘waiting’’ process, no other process can ever call signal to terminate the wait. Even
in systems with many processors, so-called busy waiting techniques may interfere with
processing because each processor contends with others while using the memory or bus
systems to fetch instructions or data. To minimize system overhead, the coordination
primitives in PC-Xinu follow this principle:

Waiting processes do not execute instructions; when all user processes
are waiting, the system does not execute code.

99

-- --

100 Process Coordination Chap. 6

Whether a system executes code when all user processes are waiting depends somewhat
on the machine architecture. Like most machines, the 8088 includes a HALT instruction
to halt the CPU while all processes wait. For the time being we will defer the problem of
halting the CPU when all processes wait and consider the simpler case of how to avoid
busy waiting when at least one process remains ready to run. Remember that PC-Xinu
always has a ready process − the null process.

6.1 Low-Level Coordination Techniques

The previous chapter contained examples of process coordination techniques in the
code for routines like ready and resume. When a process executing one of these routines
needs to modify a shared data structure like the process table, it must be sure that no oth-
er process attempts concurrent access. Coordination between these low-level system rou-
tines involves disabling interrupts and being careful not to call resched. Why not use this
solution again? Disabling interrupts has an undesirable global effect on the system: it
stops all but one process and limits what that process can do. We need general purpose
coordination primitives so that arbitrary subsets of the processes can coordinate without
stopping other processes, without disabling device interrupts for long periods of time, and
without limiting what running processes can do. For example, it should be possible for
one process to prohibit changes to a large data structure long enough to print it, without
stopping those processes that do not need to access it.

6.2 Implementation Of High-Level Coordination Primitives

The PC-Xinu implementation of counting semaphores avoids ’’busy waiting’’ by
denying CPU service to waiting processes. When a process needs to wait for some sema-
phore, the system places it on a list of processes associated with that semaphore. Natur-
ally, each semaphore must have its own, independent list of waiting processes. To delay
the current process, wait(s) enqueues it on the list for s and calls resched allowing other
processes to run. Signal(s) checks the list associated with s whenever it is called. Pro-
vided the list of waiting processes is nonempty, signal restarts a process by moving it
back to the ready list.

In what state should a process be placed while it is waiting for a semaphore? It is
clearly not current or ready because it is neither using the CPU nor eligible to use it. The
suspended state, introduced in Chapter 5, will not suffice either, because it is used by
procedures like suspend and resume that have no connection with semaphores. More im-
portantly, processes waiting for semaphores appear on a list, but suspended processes do
not − kill needs to distinguish the two cases. Whenever the existing process states cannot
adequately indicate how operations should be carried out, the designer can invent a new
state. In this case we will call the new state ‘‘waiting,’’ and refer to it in the code with
the symbolic constant PRWAIT. Figure 6.1 shows the expanded state transitions.

-- --

Sec. 6.2 Implementation Of High-Level Coordination Primitives 101

READY CURRENT

resched

resched

SUSPENDED
suspendresume

suspend

create

WAITING
waitsignal

Figure 6.1 Transitions for the ’waiting’ state

6.2.1 Semaphore Data Structures

In PC-Xinu, semaphore information is kept in the global semaphore table, semaph.
Each entry in semaph contains the integer count and list of processes corresponding to
one semaphore; its definition is given in C by structure sentry. File sem.h contains the
details:

-- --

102 Process Coordination Chap. 6

/* sem.h - isbadsem */

#ifndef NSEM

#define NSEM 45 /* number of semaphores, if not defined */

#endif

#define SFREE ’\01’ /* this semaphore is free */

#define SUSED ’\02’ /* this semaphore is used */

struct sentry { /* semaphore table entry */

char sstate; /* the state SFREE or SUSED */

short semcnt; /* count for this semaphore */

short sqhead; /* q index of head of list */

short sqtail; /* q index of tail of list */

};

extern struct sentry semaph[];

extern int nextsem;

#define isbadsem(s) (s<0 | | s>=NSEM)

In structure sentry, field semcnt contains the current integer value of the semaphore. The
list of processes waiting for a semaphore resides in the q structure; sentry fields sqhead
and sqtail only give the index of the head and tail. The state field, sstate tells whether
each semaphore entry is currently free (unallocated) or in use.

Throughout the system, semaphores are identified by an integer. As with processes,
the semaphore identifiers are meaningful values, chosen to connect the semaphore and its
table entry:

Semaphores are identified by their index in the global semaphore table,
semaph.

System calls wait and signal implement the basic semaphore operations. Wait(s) de-
crements the count of semaphore s. If the count remains nonnegative, wait returns to the
caller immediately. Otherwise, it enqueues the calling process on the list for s, changes
the process state to PRWAIT, and calls resched to switch to a ready process. The list is
maintained as a FIFO queue with insertions at the tail and deletions at the head. In
essence, a process executing wait on a semaphore with a nonpositive count voluntarily
gives up control of the CPU after wait records its id on the list of waiting processes.

Once enqueued on a semaphore list, a process remains there (and hence, not execut-
ing) until it reaches the head of the queue and some other process signals the semaphore.
When the call to signal moves the waiting process back to the ready list, it becomes eligi-

-- --

Sec. 6.2 Implementation Of High-Level Coordination Primitives 103

ble to use the CPU and eventually resumes execution. From the point of view of the
waiting process, its last act consisted of calling ctxsw. The call to ctxsw returns to
resched, the call to resched returns to wait, and the call to wait returns to wherever it was
called.

/* wait.c - wait */

#include <conf.h>

#include <kernel.h>

#include <proc.h>

#include <q.h>

#include <sem.h>

/*--

* wait -- make current process wait on a semaphore

*--

*/

SYSCALL wait(sem)

int sem;

{
int ps;

register struct sentry *sptr;

register struct pentry *pptr;

disable(ps);

if (isbadsem(sem) | | (sptr = &semaph[sem])->sstate == SFREE) {
restore(ps);

return(SYSERR);

}
if (--sptr->semcnt < 0) {

(pptr = &proctab[currpid])->pstate = PRWAIT;

pptr->psem = sem;

enqueue(currpid,sptr->sqtail);

resched();

}
restore(ps);

return(OK);

}

The code for signal is straightforward. It increments the semaphore count and
makes the first waiting process ready to run.

-- --

104 Process Coordination Chap. 6

/* signal.c - signal */

#include <conf.h>

#include <kernel.h>

#include <proc.h>

#include <q.h>

#include <sem.h>

/*--

* signal -- signal a semaphore, releasing one waiting process

*--

*/

SYSCALL signal(sem)

register int sem;

{
register struct sentry *sptr;

int ps;

disable(ps);

if (isbadsem(sem) | | (sptr = &semaph[sem])->sstate == SFREE) {
restore(ps);

return(SYSERR);

}
if (sptr->semcnt++ < 0) {

ready(getfirst(sptr->sqhead));

resched();

}
restore(ps);

return(OK);

}

Although it may seem difficult to understand why signal makes a process ready even
though the semaphore count remains negative, or why wait does not enqueue the process
every time, the reason is both easy to understand and easy to implement. Wait and signal
keep the following condition invariant:

A nonnegative semaphore count means that the queue is empty; a
semaphore count of negative n means that the queue contains n waiting
processes.

Both wait and signal change the semaphore count, so they adjust the queue length, if
necessary, to reestablish the invariant. Because wait decrements the count, it adds the
current process to the queue if the new count is negative. Because signal increments the
count, it removes a process from the queue if the queue is nonempty.

-- --

Sec. 6.3 Semaphore Creation and Deletion 105

6.3 Semaphore Creation and Deletion

The need for semaphores may come and go as execution progresses, so it would be
foolish to allocate each semaphore a specific purpose. Rather than fix the use of sema-
phores at compile time, Xinu allows processes to request a semaphore, use it, and then
release it. Processes can create an arbitrary number of semaphores in arbitrary order, as
long as the number allocated simultaneously does not exceed the maximum table size.
To help minimize the cost of creating semaphores, the system preallocates head and tail
nodes in the q structure for each semaphore list at system initialization time. Thus, only a
small amount of work needs to be done at semaphore creation time.

System calls screate and sdelete allocate and release semaphores. Screate, shown
below, takes the initial semaphore count as an argument and returns the semaphore id of
a semaphore with that count. The method is simple: search for an unused entry in the
semaphore table semaph and initialize it. Screate uses procedure newsem to search for a
free entry. Screate then initializes the count and returns the index of the semaphore just
allocated.

-- --

106 Process Coordination Chap. 6

/* screate.c - screate, newsem */

#include <conf.h>

#include <kernel.h>

#include <proc.h>

#include <q.h>

#include <sem.h>

/*--

* screate -- create and initialize a semaphore, returning its id

*--

*/

SYSCALL screate(count)

int count; /* initial count (>=0) */

{
int ps;

int sem;

disable(ps);

if (count<0 | | (sem=newsem())==SYSERR) {
restore(ps);

return(SYSERR);

}
semaph[sem].semcnt = count;

/* sqhead and sqtail were initialized at system startup */

restore(ps);

return(sem);

}

/*--

* newsem -- allocate an unused semaphore and return its index

*--

*/

LOCAL newsem()

{
int sem;

int i;

for (i=0 ; i<NSEM ; i++) {
sem=nextsem--;

if (nextsem < 0)

nextsem = NSEM-1;

if (semaph[sem].sstate==SFREE) {
semaph[sem].sstate = SUSED;

-- --

Sec. 6.3 Semaphore Creation and Deletion 107

return(sem);

}
}
return(SYSERR);

}

Sdelete reverses the actions of screate. It takes the index of a semaphore as an argu-
ment, and releases the semaphore table entry for use again.

/* sdelete.c - sdelete */

#include <conf.h>

#include <kernel.h>

#include <proc.h>

#include <q.h>

#include <sem.h>

/*--

* sdelete -- delete a semaphore by releasing its table entry

*--

*/

SYSCALL sdelete(sem)

int sem;

{
int ps;

int pid;

struct sentry *sptr; /* address of sem to free */

disable(ps);

if (isbadsem(sem) | | semaph[sem].sstate==SFREE) {
restore(ps);

return(SYSERR);

}
sptr = &semaph[sem];

sptr->sstate = SFREE;

if (nonempty(sptr->sqhead)) { /* free waiting processes */

while((pid=getfirst(sptr->sqhead)) != EMPTY)

ready(pid);

resched();

}
restore(ps);

return(OK);

}

-- --

108 Process Coordination Chap. 6

If processes remain enqueued when sdelete tries to delete a semaphore, it must
dispose of them. When faced with an active semaphore, sdelete places waiting processes
back on the ready list, allowing each to resume execution as if the semaphore had been
signaled. This is only one possible disposition of the waiting processes; the exercises
suggest some other alternatives.

6.4 Returning The Semaphore Count

It is useful to be able to retrieve the count of a semaphore. For example, knowing
that a semaphore count is positive may indicate that there are units available of a particu-
lar resource. The count of a semaphore, contained in the semcnt component of the sema-
phore structure, is returned by the scount routine shown here:

/* scount.c - scount */

#include <conf.h>

#include <kernel.h>

#include <sem.h>

/*--

* scount -- return a semaphore count

*--

*/

SYSCALL scount(sem)

int sem;

{
extern struct sentry semaph[];

int ps;

int ct;

disable(ps);

if (isbadsem(sem) | | semaph[sem].sstate==SFREE) {
restore(ps);

return(SYSERR);

}
ct = semaph[sem].semcnt;

restore(ps);

return(ct);

}

-- --

Sec. 6.5 Other Semaphore Utilities 109

6.5 Other Semaphore Utilities

Two additional utilities, signaln and sreset, are used in the input/output software and
are also available to user programs. Signaln is equivalent to calling signal a number of
times, while sreset is the same as deleting a semaphore and then creating it with a new
initial count. These routines are designed to be more efficient than the combination of
routines they substitute for.

/* signaln.c - signaln */

#include <conf.h>

#include <kernel.h>

#include <proc.h>

#include <q.h>

#include <sem.h>

/*--

* signaln -- signal a semaphore n times

*--

*/

SYSCALL signaln(sem,count)

int sem;

int count;

{
struct sentry *sptr;

int ps;

disable(ps);

if (isbadsem(sem) | | semaph[sem].sstate==SFREE | | count<=0) {
restore(ps);

return(SYSERR);

}
sptr = &semaph[sem];

for (; count > 0 ; count--)

if ((sptr->semcnt++) < 0)

ready(getfirst(sptr->sqhead));

resched();

restore(ps);

return(OK);

}

-- --

110 Process Coordination Chap. 6

/* sreset.c - sreset */

#include <conf.h>

#include <kernel.h>

#include <proc.h>

#include <q.h>

#include <sem.h>

/*--

* sreset -- reset the count and queue of a semaphore

*--

*/

SYSCALL sreset(sem,count)

int sem;

int count;

{
struct sentry *sptr;

int ps;

int pid;

int slist;

disable(ps);

if (isbadsem(sem) | | count<0 | | semaph[sem].sstate==SFREE) {
restore(ps);

return(SYSERR);

}
sptr = &semaph[sem];

slist = sptr->sqhead;

while ((pid=getfirst(slist)) != EMPTY)

ready(pid);

sptr->semcnt = count;

resched();

restore(ps);

return(OK);

}

6.6 Summary

This chapter discussed process synchronization primitives known as counting sema-
phores. In addition to showing how to build procedures that create and delete sema-
phores, it showed how the primitive semaphore operations wait and signal cooperate to
suspend processes and resume them, such that waiting processes do not use any CPU
time. In essence, a process that needs to wait for a semaphore voluntarily enqueues itself

-- --

Sec. 6.6 Summary 111

on the list of processes waiting for the semaphore and calls the scheduler to allow other
processes to execute. Eventually, when another process signals the semaphore, it moves
the waiting process back to the ready list, so it can regain control of the CPU.

FOR FURTHER STUDY

Dijkstra [1965] introduced semaphores and showed how to use them for synchroni-
zation. Initially, semaphores had only binary values, and the operations were known as P
(wait) and V (signal). These are summarized in the appendix of Dijkstra [1968].
Although binary semaphores are sufficient to provide basic synchronization and mutual
exclusion, the addition of counts makes them much more convenient to use. Patil [1971]
and Kosaraju [1973] consider whether binary semaphores can solve all synchronization
problems.

Brinch Hansen [1970, 1972] showed how to synchronize by exchanging messages.
Another process synchronization tool, the monitor, is described by Hoare [1974]. Its be-
ginnings can be seen in the ‘‘secretary’’ of Dijkstra [1971] and in Brinch Hansen [1973].
Although high-level primitives like monitors make it easier to express the intended pro-
cess interaction, they can be implemented with semaphores.

EXERCISES

6.1 Deleting a semaphore while processes remain enqueued waiting for it might cause abnormal
system behavior. Give a scenario where this might occur. Rewrite sdelete to refuse to delete
a busy semaphore.

6.2 Another way to handle the deletion of an active resource is to defer the deletion. Rewrite
sdelete, wait, and signal to place deleted semaphores in a state such that signal releases the
semaphore table entry when it removes the last waiting process from the queue. What unex-
pected effects might deferring deletion have?

6.3 Instead of placing responsibility for deletion of active semaphores on the process calling
sdelete, consider allowing waiting processes to handle the problem. Modify wait so it returns
an integer DELETED in case the semaphore was deleted while the calling process was wait-
ing. (Choose a value for DELETED that will not interfere with SYSERR or OK.) How can
wait know when to return DELETED? Checking the state of the semaphore is insufficient
because a higher priority process may reuse the table entry before all the deleted processes
resume execution and examine sstate. Hint: deposit the return value in the process table.

6.4 Instead of allocating a central semaphore table, arrange to have each process allocate space
for semaphore entries as needed, and use the address of an entry as the semaphore id. Com-
pare this method to that of a centralized table. What are the advantages? Disadvantages?

6.5 Wait, signal, screate, and sdelete coordinate among themselves for use of the semaphore
table. How much easier would it be to code them if semaphores were used?

-- --

112 Process Coordination Chap. 6

6.6 Assuming procedure calls are expensive, sdelete could check the priority of processes as it
added them to the ready list and not bother calling resched if none had higher priority than
the current process. Speculate about the wisdom of adding this optimization.

6.7 Languages meant specifically for writing concurrent programs often have coordination and
synchronization imbedded in the language constructs directly. For example, it might be pos-
sible to declare procedures in groups such that the compiler automatically inserts code to
prohibit more than one process from executing in any group. Find an example of a language
designed for concurrent programming, and compare process coordination with the sema-
phores in PC-Xinu. What types of mistakes can a programmer make when required to mani-
pulate semaphores directly?

6.8 Because it is much more likely that an incorrect expression will evaluate to 0 or 1, newsem
begins allocating semaphores from the high end of the table to reduce the chance of inadver-
tently waiting on the wrong semaphore. If all entries are allocated, the problem persists.
Suggest better ways of identifying semaphores.

6.9 Draw a call graph of all procedures in Chapters 1 through 6, showing which procedures each
procedure calls. Can the layered structure be deduced from the graph?

6.10 The scount routine returns SYSERR in case of error. But SYSERR is a legal semaphore count
value, so the caller cannot reliably tell whether the return value is a semaphore count or an
error indicator. Redesign scount to eliminate this problem.

