
8

Memory Management

Main memory ranks high among the important resources that an operating system
manages because it is essential for program execution. The operating system keeps track
of the location and size of available free space, allocating it on demand, and recovering it
when processes complete. In large computer systems, where the demand for memory at
a given time often exceeds the total available, the system must multiplex real memory
among processes waiting to use it. Memory multiplexing can take the form of swapping,
where entire processes are written to secondary store when they are not using the CPU,
or paging. A paged system divides each program into small fixed size pieces called
pages, keeping all but the most recently referenced pages on secondary storage. Pro-
grammers do not worry about swapping or paging because the system performs these ac-
tivities in a way that is transparent to the running programs.

Often, paged systems do more than multiplex the real memory among processes −
they supply each process with its own, independent address space. These so-called virtu-
al address spaces can be larger than the real memory on the machine because the paging
system keeps the virtual image on disk, moving only the small subset of pages being
referenced to main memory. When a process references memory location i in its address
space, the hardware consults memory mapping tables to determine if the page on which
the reference lies currently resides in main memory. If not, the system suspends the pro-
cess and loads the page, writing some other page back to secondary storage if necessary
to make room for the new one. Finally, when the page has been loaded, process execu-
tion resumes.

To be efficient, memory management (especially paging) requires hardware sup-
port. If a memory management mechanism is designed well, the operating system can
use it to partition memory in such a way that the hardware prevents one process from
reading or writing memory allocated to another process. Such protection is essential in
environments where processes are not friendly, or where security is important; it is con-
venient in almost any environment because it helps detect programming errors.

123

-- --

124 Memory Management Chap. 8

8.1 Memory Management On The 8088

Unfortunately, the 8088 hardware poorly manages multiple address spaces and can-
not protect processes from one another. As a consequence, the PC-Xinu system and all
processes occupy portions of the same text and data address spaces which are arranged as
shown in Figure 8.1:

0 _etext _edata _end���
text data bss FREE SPACE���

�� �� �� �� ��

Figure 8.1 Storage layout when PC-Xinu begins

The program text occupies the lowest part of memory, followed by the global variables in
the data segment. At system startup, PC-Xinu initializes global variable maxaddr to the
address of the highest memory location addressable in the data segment, so the initial size
of the free space can be determined in a C program.

Maintaining processes using a single data space is certainly not ideal, but it does
have some advantages. For one thing, processes can pass pointers among themselves and
the operating system easily, because the interpretation of an address does not depend on
the process context. The ability to share data is another advantage: because the
processes share global variables, they can exchange large amounts of data without copy-
ing it. Finally, having just one address space for data makes the memory management
routines much simpler to implement than those found in other systems.

8.2 Dynamic Memory Requirements In PC-Xinu

PC-Xinu requires program text and all global data to remain resident in main
memory at all times. However, program text and global data account for only part of the
space required by an executing process. Each process also needs space for a stack to
hold procedure frames and local variables, as well as so-called heap space for other
dynamically allocated variables. PC-Xinu allocates stack memory from the lowest ad-
dresses in free space, producing a run-time allocation like that shown in Figure 8.2.

0 _etext _edata _end� ���
text data bss heap stack1 stack2 stack3 FREE . . .� ���

�� �� �� �� �� �� �� �� ��

Figure 8.2 Storage layout during execution

This chapter explores the procedures and data structures that manage the free
memory, allocate space for stack and heap storage, and keep track of storage that has
been released. At this level, free space is treated as an exhaustible resource − the system
simply passes it out as long as requests can be satisfied. A process that cannot obtain

-- --

Sec. 8.2 Dynamic Memory Requirements In PC-Xinu 125

memory must decide for itself whether to try again. Exhaustive allocation works only
when processes cooperate to keep from consuming all free memory. (Chapter 15 ex-
plores a set of high level memory management routines that prevent exhaustion by parti-
tioning memory and blocking requesting processes until memory becomes available.)

8.3 Low-Level Memory Management Procedures

Two procedures, getmem and freemem, obtain and release process stack space. Re-
call that create used procedure getmem to allocate stack space when forming a new pro-
cess. Getstk obtains a block of memory and returns its address. Create records the size
and location of the allocated space in the process table entry. Later, when the process
terminates, kill calls procedure freemem to return the process’ stack space to the free list
again. Freemem expects as arguments the address of the block being returned and the
size. Getmem and freemem also obtain and release blocks of free space for other system
purposes.

Because only create and kill allocate and free process stacks, PC-Xinu guarantees
that the stack space allocated to a process will be released at process exit. Unfortunately,
the system cannot guarantee that other space allocated by getmem will be released, be-
cause it does not record such allocations on a process by process basis. Thus, the burden
of returning heap space is left to the user program:

A process must release storage that it allocates from the heap before it
exits.

Of course, returning allocated space does not guarantee that the heap will never be ex-
hausted. The demand could still exceed the available space, or the free space could be
fragmented into small, discontiguous pieces. But releasing space avoids needless ex-
haustion.

8.4 The Location Of Allocated Storage

It is desirable to have stack space and heap storage allocated from opposite ends of
the available space. Because the hardware grows stacks downward, such an allocation
technique is ideal for a single user process because all remaining free space separates the
heap and stack. If the stack overflows accidentally, it runs into free space located
between the stack and the heap, instead of data. When more than one process executes
concurrently, the situation is not as pleasant. Stack overflow in one process corrupts data
in the stack of another because the system allocates stacks contiguously. In fact, stack
overflow is one of the most common problems in PC-Xinu. The exercises in Chapter 4
suggested one solution − place an uncommon value at the base of each process stack, and
have resched check both the current process stack size and the value at the base of the
stack before the process resumes.

-- --

126 Memory Management Chap. 8

8.5 The Implementation Of PC-Xinu Memory Management

PC-Xinu keeps blocks of free memory linked together on a list with global variable
memlist pointing to the first free block. An important invariant maintained by all these
procedures is:

Blocks on the free list are ordered by increasing address.

While on the free list, each block contains, in the first two words, a pointer to the
next block and the size of the current block. The record memlist is also declared to have
the same form as all blocks on the free list. File mem.h contains the pertinent definitions
in C:

/* mem.h - roundew, truncew, getstk, freestk */

/*--

* roundew, truncew - round or truncate address to next even word

*--

*/

#define roundew(x) ((3 + (WORD)(x)) & (˜3))

#define truncew(x) (((WORD)(x)) & (˜3))

#define getstk(n) getmem(n)

#define freestk(b,s) freemem(b,s)

struct mblock {
struct mblock *mnext;

word mlen;

};

#define end endaddr /* avoid C library conflict */

extern struct mblock memlist; /* head of free memory list */

extern char *maxaddr; /* max memory address */

extern char *end; /* address beyond loaded memory */

#define MMAX 65024 /* maximum memory size */

#define MBLK 512 /* block size for global alloc */

#define MMIN 8192 /* minimum Xinu allocation */

#define MDOS 1024 /* save something for MS-DOS */

extern char *getmem();

extern int freemem();

-- --

Sec. 8.5 The Implementation Of PC-Xinu Memory Management 127

Structure mblock gives the shape of each node on the free list. Field mnext always points
to the next block (or contains NULL), and field mlen gives the length of the current block
in bytes, including the two-word header.

File mem.h introduces two in-line functions, roundew and truncew. Because only
blocks of two words (4 bytes) or more can be linked onto the free list, PC-Xinu refuses to
allocate or free smaller quantities of memory. To be sure that requests specify correct
amounts of memory, the memory management routines use roundew or truncew as need-
ed to round or truncate to an even number of words, by making the number of bytes a
multiple of four.

8.5.1 Allocating Storage

Procedure getmem allocates storage. The code for getmem appears below in file
getmem.c. It uses roundew to round up the memory request and then searches the
memory list to find the first block of memory large enough to satisfy the request. Be-
cause the list of free blocks is singly-linked, getmem uses two pointers, p and q, to search
it. When p points to a block of suitable size, q points to its predecessor on the list (possi-
bly the head, memlist). If the size of a free block exactly matches the size of the request,
getmem merely deletes the block from the free list and returns its address. If the size of
the free block is greater than the size requested, getmem partitions off a piece of size
nbytes and links the remainder back on the free list. It returns the address of the allocated
piece to the caller.

When a block on the free list must be divided, variable leftover points to the piece
that must be left on the free list. Computing such an address is conceptually simple: the
leftover piece lies nbytes beyond the beginning of the block. However, adding nbytes to
pointer p does not produce the desired result because C performs pointer arithmetic. To
force C to use integer arithmetic instead of pointer arithmetic, p is changed to a char
pointer using a cast (i.e., ‘‘(char *)p’’), and then the result is changed back into a struct
mblock pointer with another cast.

-- --

128 Memory Management Chap. 8

/* getmem.c - getmem */

#include <conf.h>

#include <kernel.h>

#include <mem.h>

/*--

* getmem -- allocate heap storage, returning lowest integer address

*--

*/

char *getmem(nbytes)

word nbytes;

{
int ps;

struct mblock *p, *q, *leftover;

disable(ps);

if (nbytes==0) {
restore(ps);

return(NULL);

}
nbytes = roundew(nbytes);

for (q=&memlist, p=q->mnext ;

(char *)p != NULL ;

q=p, p=p->mnext)

if (p->mlen == nbytes) {
q->mnext = p->mnext;

restore(ps);

return((char *) p);

} else if (p->mlen > nbytes) {
leftover = (struct mblock *)((char *)p + nbytes);

q->mnext = leftover;

leftover->mnext = p->mnext;

leftover->mlen = p->mlen - nbytes;

restore(ps);

return((char *) p);

}
restore(ps);

return(NULL);

}

-- --

Sec. 8.5 The Implementation Of PC-Xinu Memory Management 129

8.5.2 Releasing Storage

Processes return previously allocated memory to the list of free blocks when they
finish using it so it can be given out again. System call freemem returns a block of
storage by inserting it in the proper location of the free list and coalescing it with any ad-
jacent free blocks. As in getmem, pointers p and q run down the list of free blocks. Be-
cause the list is kept in order by block address, freemem stops searching as soon as the
address of the block to be returned lies between p and q.

Special cases complicate the code that links the returned block into the free list. The
new block may lie adjacent to free blocks above or below, or both. When these cases ar-
ise, freemem groups adjacent free blocks together to form larger blocks. (Failure to do so
would eventually fragment the free list into small pieces.)

A pitfall can be avoided by remembering that the new block may be adjacent to free
blocks on both sides. As shown in file freemem.c, the code always checks to see whether
the new block is adjacent to the block following, even if it coalesces the new block with
the previous one:

-- --

130 Memory Management Chap. 8

/* freemem.c - freemem */

#include <conf.h>

#include <kernel.h>

#include <mem.h>

/*--

* freemem -- free a memory block, returning it to memlist

*--

*/

SYSCALL freemem(block, size)

char *block;

word size;

{
int ps;

struct mblock *p, *q;

char *top;

size = roundew(size);

block = (char *) truncew((word)block);

if (size==0 | | block > maxaddr | | (maxaddr-block) < size | |
block < end)

return(SYSERR);

disable(ps);

(char *)q = NULL;

for(p=memlist.mnext ;

(char *)p != NULL && (char *)p < block ;

q=p, p=p->mnext)

;

if ((char *)q != NULL && (top=(char *)q+q->mlen) > block

| | (char *)p != NULL && (block+size) > (char *)p) {
restore(ps);

return(SYSERR);

}
if ((char *)q != NULL && top == block)

q->mlen += size;

else {
((struct mblock *)block)->mlen = size;

((struct mblock *)block)->mnext = p;

memlist.mnext = (struct mblock *)block;

(char *)q = block;

}
/* note that q != NULL here */

if ((char *)p != NULL

-- --

Sec. 8.5 The Implementation Of PC-Xinu Memory Management 131

&& ((char *)q + q->mlen) == (char *)p) {
q->mlen += p->mlen;

q->mnext = p->mnext;

}
restore(ps);

return(OK);

}

8.6 Summary

The lowest level of the PC-Xinu memory manager maintains a linked list of all free
storage, allocating storage on demand and adding it back to the free list when requested
to do so. The free list is ordered by address. Memory is allocated from the lowest free
memory addresses using the first-fit algorithm.

At this level, memory is considered an exhaustible resource, given out without con-
straint until none remains free. The low-level memory manager simply rejects requests
that cannot be satisfied; there are no mechanisms to prevent processes from using all the
free memory or to block processes until their requests can be satisfied. Higher layers of
the memory manager that provide these mechanisms are discussed in Chapter 15.

FOR FURTHER STUDY

Memory management has received wide attention in the literature. The basic algo-
rithm used here is called ‘‘first-fit’’ in Knuth [1968], where alternatives like ‘‘best-fit’’
and ‘‘buddy’’ are also considered. Comparisons of first-fit and best-fit can be found in
the articles by Shore [1975] and Bays [1977].

Much of the research in memory management has centered on discovering and
analyzing policies for paging and swapping on systems that support virtual address
spaces. Peterson and Silbershatz [1983] devote an entire chapter to virtual memory. A
key problem involves selecting which program or part of a program to write back onto
secondary store when a new page must be brought into memory. Denning [1970, 1980]
surveys virtual storage systems, describing the research. Madnick and Donovan [1974]
describe commercial hardware that supports paging and describe its use. Other good
descriptions of memory management can be found in Calingaert [1982], Habermann
[1976], and Tsichritzis and Bernstein [1974].

-- --

132 Memory Management Chap. 8

EXERCISES

8.1 An early version of getmem had no provision for returning memory to the free list. Speculate
about microcomputer applications: is freemem necessary?

8.2 Implement the smallest routines possible for memory allocation, assuming there is no need to
return storage to a free list. How does the size of the new allocation routine compare to the
size of getmem?

8.3 Allocating and deallocating blocks of varying size can fragment memory, leaving many small
pieces on the free list. Investigate schemes other than ‘‘first-fit’’ for choosing a block of
memory from the free list.

8.4 PC-Xinu applies the ‘‘first-fit’’ method from one end of the free list. Implement a way to
even out the allocation of memory across the free memory area by beginning the current
search where the last allocation left off (wrapping around memory if necessary).

8.5 PC-Xinu merely reports an error when no block of memory exists that can satisfy the request.
Consider an alternative in which the calling process is merely delayed (say, by placing it on a
queue) until a sufficiently large piece of memory has been returned to the free list. Explain
how all processes might eventually be enqueued waiting for memory, even though no process
requests more memory than exists.

8.6 Carefully consider a program that allocates a large block of memory, frees half of it, frees the
other half, and then repeats the actions. Under what circumstances will the program fail? Do
you consider this a problem?

8.7 Modify the memory management routines to allow allocation of arbitrarily small blocks of
memory.

8.8 Investigate the buddy system for memory allocation. Would it be wise to use it in PC-Xinu?

8.9 Find out how the 80286 processor manages memory. Design software support routines to
take advantage of the hardware.

8.10 Examine the Motorola 68000 and PDP-11 memory management schemes. What layers of
software are needed at the lowest level of the system to implement demand paging?

8.11 Explore segmentation as an alternative to paging. What are its advantages? Does paging a
segmented memory make sense?

