
1

Introduction and Overview

1.1 Operating Systems

Hidden in every computer system is the software that controls processing, manages
resources, and communicates with external devices like disks and printers. Collectively,
the programs that perform these chores are sometimes referred to as the executive, moni-
tor, task manager, or kernel. We will use the broader term operating system.

Computer operating systems are among the most complex objects created by man-
kind: they allow multiple users to share the machine simultaneously, protect data from
unauthorized access, and keep dozens of independent devices operating correctly. All
this is done at blinding speed by issuing detailed commands to incredibly intricate
hardware. But the operating system is not usually an independent machine that sits
around all day controlling the computer − it is itself a program that is executed by the
same processor that executes user’s programs. When the computer is executing a user’s
program, the operating system is inactive.

Arranging details so the operating system will always regain control is complicated
enough, but it is even more impressive that an operating system manages to provide rea-
sonably high-level services with unreasonably low-level hardware. As this book
proceeds, we will see how crude hardware is and how much system software it takes to
manage even simple devices like terminals. The philosophy behind our design is that
operating systems need not be confined by the hardware; they can hide the low-level de-
tails of the real machine and provide the high-level services of an abstract machine.

Operating system design is not an old craft; an understanding of it has evolved slow-
ly along with our understanding of machine architectures. In the beginning, machines
were scarce and expensive; only a few programmers had an opportunity to use them, and
fewer still had an opportunity to build operating systems. Because the basic problems of
concurrent computation and automated resource management had not been solved, com-

1

-- --

2 Introduction and Overview Chap. 1

mercial systems often contained major design flaws. They were unnecessarily complex
and riddled with errors. Their internal details varied from machine to machine because
they were intimately concerned with hardware resources. Their external capabilities and
human interfaces also varied widely as vendors sought new ways to attract customers.

As technology grew, machines became less costly and more abundant. Advances in
microelectronic technology reduced fabrication costs and made possible inexpensive
single-board and single-chip computers. Vendors now offer customized chips. Design-
ing and implementing software systems for microcomputers is no longer a task reserved
for a few specialists; it is a skill expected of competent systems programmers.

Fortunately, our understanding of operating system design has grown along with the
technology used to produce new machines. As researchers examined fundamental issues
and experimented with system design, they began to formulate principles and techniques
of good design. They identified the abstract services common to all operating systems
and explored the many variations possible. They defined the basic operating system
components that carry out these machine-independent abstractions, and discovered a
technique called layering that organizes the components, simplifies system design, and
eases implementation.

Compared to its early counterpart, a modern system is simple, clean, and portable.
A modern system is easier to design because it follows a pattern, and easier to understand
or modify because it is cleanly partitioned into layers. At the heart of the layered organi-
zation is the raw machine. Building out from this core, higher layers of software provide
more powerful primitives and shield the user from the machine beneath. Each layer of
the system provides an abstract service, implemented in terms of the abstract services
provided by lower level layers.

1.2 Our Approach

This book is a guide to the design and implementation of layered operating systems.
It takes a practical approach, showing the details of a real system. We begin with a mi-
crocomputer, an easy machine to understand, and proceed step-by-step through the con-
struction of a layered system capable of supporting multiple processes, network com-
munication, and a file system. Each chapter explains the role of one layer in the system,
illustrating the details with programs. The design ends with a complete, working system
that fits together in a clean and elegant way. The resulting system is not a toy; it is a
powerful operating system shoehorned into a microcomputer.

Our approach provides two advantages. First, every part of the system is present;
the reader will see how an entire system fits together, not merely how one or two impor-
tant parts interact. Because the code for every piece is included there can be no mystery
about any part of the implementation. Second, the reader can obtain a copy of the system
to modify, instrument, measure, extend, or transport to another architecture.

Learning from a real system means that the programs form an integral part of the
text that cannot be ignored. They are the centerpiece of discussion and must be read and
studied to appreciate the underlying subtlety and engineering detail. Many of the exer-

-- --

Sec. 1.2 Our Approach 3

cises, for example, suggest improvements or modifications that require the reader to
delve into details. A skillful programmer will find additional ways to improve the code.

The key to a successful design lies in ordering the layers, so services needed to im-
plement a given layer are defined in layers beneath it. In practice, design is a trial-and-
error process where the layering is reorganized as design proceeds. To eliminate futile
attempts and the consequent backtracking, we can use the results of research and the ac-
cumulated experience of other designers. Instead of considering alternative organiza-
tions, we simply begin with a layering scheme that is known to work well and follow it
consistently. The organization selected is a process-based layering scheme that is versa-
tile and widespread. It has several other useful properties that will become apparent as
well (e.g., successively larger subsets form successively more powerful systems). By the
end of the book, the reader will see how each piece of the system fits into this scheme
and be prepared to tackle alternative organizations.

1.3 What An Operating System Is Not

Before proceeding into the design of an operating system, we should all agree on
what it is we are about to study. Surprisingly, many programmers do not even have a
correct intuitive definition of an operating system. Perhaps the problem arises because
vendors and computer professionals often use one name to refer to the set of all software
supplied with an operating system as well as the system itself. Perhaps it arises because
the available support software usually makes it unnecessary for programmers to access
system services directly, or perhaps because the user interface gives the system its
characteristic personality. In any case, we can clear the air quickly by ruling out well-
known items that are not part of the operating system core.

First, an operating system is not a language or a compiler, even though vendors usu-
ally supply compilers with their systems. All programs, even the operating system, must
be written in some language. Although recent languages like Concurrent Euclid aid in
writing operating systems, we will see that a system can be constructed using a conven-
tional language and a conventional compiler.

Second, an operating system is not merely a command interpreter, although most
vendors supply a command interpreter as the human interface to their systems. In older
systems, designers chose to build command interpreters that users could not replace easi-
ly, causing users to assume that command interpretation was inherently linked to the
operating system. In modern systems, command interpreters are like other programs; in-
dividual users can choose one that suits them or write their own.

Third, an operating system is not a library of commands. Utility programs that edit
files, send mail, compile programs, or link them are just that − utility programs that any
competent programmer can write and run without changing the operating system. Ven-
dors usually supply a set of utilities with their operating systems, but local installations
often change or replace them without modifying the system itself. Modern systems ex-
tend the freedom to replace commands to users, so they can tailor the computing environ-
ment according to their individual tastes.

-- --

4 Introduction and Overview Chap. 1

1.4 An Operating System Viewed From The Outside

The essence of an operating system lies in the services it provides to user programs.
Programs access these services by making system calls. System calls look like procedure
calls when they appear in a program, but transfer to operating system routines when in-
voked at run-time. Taken as a set, the system calls establish a well-defined boundary
between the running program and the operating system. They define the services that the
system provides and the interface to those services.

To appreciate the interior of an operating system, one must first understand the
characteristics of the services it provides and how to use those services. This book
describes an operating system called PC-Xinu. We will begin by reviewing a few of the
services it provides. Later we will return and describe, in detail, the implementation of
each.

PC-Xinu runs on a microcomputer along with code from the user’s programs. It
performs chores such as reading characters from a keyboard; displaying characters on a
terminal; managing multiple, simultaneous computations; operating timers; saving files
on disk storage devices; and relaying messages between programs. The description that
follows will help you understand, in general terms, how to use PC-Xinu, and the exam-
ples that follow will help explain some of its services.

1.4.1 The PC-Xinu Small Machine Environment

Small computers, like the one described in this book, are themselves capable of
compiling operating systems as large as the ones that control them. Such a system has
enough speed, storage, and system software that it behaves like any other general-
purpose computer system: the programmer can create programs, compile them, save
them, and run them using only the microcomputer. In the past, small machines did not
have enough software or storage resources for these activities, and compiling an operat-
ing system could take days or weeks.

PC-Xinu runs on the same microcomputer system which is used for its development
and compilation. The development environment includes an editor, compiler, assembler,
linker, and library management utilities which are used together to create a library of rou-
tines − the heart of PC-Xinu. When a user module is linked with this library and the
resulting program is run, PC-Xinu springs to life as an operating system essentially in-
dependent of its host environment.

1.4.2 PC-Xinu Services

Programs running under PC-Xinu access services by calling operating system rou-
tines. For example, the system routine putc writes a single character on an I/O device. It
takes two arguments: the device identifier and the character to write. Here is a C† pro-
gram that writes the message ‘‘hi’’ on the console when run under PC-Xinu:

� ���

†Appendix 1 contains a quick introduction to C that should be sufficient to understand programs in this
book.

-- --

Sec. 1.4 An Operating System Viewed From The Outside 5

/* ex1.c - xmain */

#include <conf.h>

/*--

* xmain -- write "hi" on the CONSOLE

*--

*/

xmain()

{
putc(CONSOLE,’h’);

putc(CONSOLE,’i’);

putc(CONSOLE,’\n’);

}

The code introduces several conventions used in PC-Xinu and in this book. The state-
ment, #include <conf.h> inserts a file of configuration declarations in the source pro-
gram. The configuration file contains, among other things, a definition for CONSOLE.
Usually, CONSOLE refers to a terminal connected to the micro through which the user
interacts. Later we will see the contents of conf.h and learn how names like CONSOLE
become synonymous with devices; all a user needs to know is that the include statement
must appear in any program that uses device names.

The program writes three characters to the terminal: ‘‘h’’, ‘‘i’’, and a newline.
Newline is a control character that moves the cursor to the beginning of the next line.

The source file also introduces an important convention followed throughout this
book. It begins with a one-line comment that gives the name of the file, ex1.c. If a
source file contains several procedures, their names all appear on this line. Knowing the
names of files will help you locate them if you have a machine-readable copy of PC-
Xinu. In addition, a comment of the form

/*--

* name -- description

*--

*/

precedes all procedure or program definitions to help highlight them.

1.4.3 Concurrent Processing

Conventional programs are called sequential because the programmer imagines a
machine executing the code statement-by-statement. At any instant, the machine is exe-
cuting exactly one statement. Operating systems support a much larger view of computa-
tion called concurrent processing. Concurrent processing means that many computations

-- --

6 Introduction and Overview Chap. 1

proceed ‘‘at the same time.’’
It is not difficult to imagine several independent programs each being executed

statement-by-statement on several machines, but it is exceedingly difficult to imagine
several independent computations being performed on a processor that can execute only
one instruction at a time. Is concurrent computation real or imagined? If it is real, how
does the hardware keep each program from interfering with the others? How do the pro-
grams cooperate so that only one takes control of an input or output device at a given
time?

Computer systems usually do have some concurrent capabilities, but the most visi-
ble form of concurrency, multiple independent programs executing simultaneously, is a
grand illusion. To create the illusion, an operating system switches a single processor
among multiple programs, allowing it to execute one for only a few thousandths of a
second before moving on to another. When viewed by a human, the programs appear to
proceed concurrently. The technique, called multiprogramming, appears in almost all
commercial systems. Interactive multiprogramming systems are called timesharing sys-
tems if the policy used to switch the processor around gives all users equal amounts of
CPU time. The chief characteristic of a timesharing system is that the service received
by a single user is inversely proportional to the load on the system.

Multiprogramming is a misleading term because concurrent processing encom-
passes more than ‘‘many instances of conventional programs.’’ To be more accurate we
should say that an operating system switches the CPU among many ‘‘computations’’
called processes, jobs, or tasks. Because terminology varies from system to system, it is
difficult to choose a term that accurately reflects the notion of ‘‘computation’’ in PC-
Xinu. The terms process or job usually connote an isolated computation, while task often
refers to one of a set of cooperating computations. In particular, concurrent program-
ming languages often use the term task to refer to computations that share memory.

PC-Xinu refers to ‘‘computations’’ as processes, the term used throughout the rest
of this book. The next section helps distinguish the notion of ‘‘process’’ from the usual
notion of ‘‘sequential program’’ by giving some examples. As we will see, this differ-
ence plays a central role in operating system design − everything must be built with it in
mind.

1.4.4 The Distinction Between Programs And Processes

When programmers write a conventional (sequential) program, they imagine a sin-
gle processor executing the program step-by-step without interruption or delay. Howev-
er, a programmer writing code for concurrent processes must take an entirely different
view. The operating system itself is a good example of a concurrent program. At any
given instant, several processes (computations) may be executing. It may be that no two
of them are executing the same program, but it may happen that they are all about to exe-
cute the same statement of one program. To further complicate matters, switching the
processor among processes may cause one process to overtake another; no guarantees are
made about their relative speeds. Designing the system procedures to operate correctly
in a concurrent environment provides a tough intellectual challenge because they must all

-- --

Sec. 1.4 An Operating System Viewed From The Outside 7

cooperate no matter which system procedures the user processes call or in which order.
An example will help explain the problem.

In PC-Xinu, a single process starts executing at the beginning of the user’s main
program xmain when the system begins. The initial process may continue execution by
itself, or it may create new, independent processes. When one process creates a new one,
the original continues to execute, and the new process begins executing concurrently.
For example, the code from file ex2.c consists of a main program and two procedures,
prA and prB.

/* ex2.c - xmain, prA, prB */

#include <conf.h>

#include <kernel.h>

/*--

* xmain -- example of creating processes in PC-Xinu

*--

*/

xmain()

{
int prA(), prB();

resume(create(prA, INITSTK, INITPRIO, "proc 1", 0));

resume(create(prB, INITSTK, INITPRIO, "proc 2", 0));

}

/*--

* prA -- repeatedly print ’A’ without ever terminating

*--

*/

prA()

{
while (1)

putc(CONSOLE, ’A’);

}

/*--

* prB -- repeatedly print ’B’ without ever terminating

*--

*/

prB()

{
while (1)

putc(CONSOLE, ’B’);

-- --

8 Introduction and Overview Chap. 1

}

The main program never calls either procedure directly. Instead, it calls two operating
system procedures, create and resume, passing the addresses of prA or prB as the first ar-
gument (other arguments to create specify such things as the stack space needed, a
scheduling priority, process name, the count of arguments for the process, and the pro-
cess arguments). Each call to create forms a new process that will begin executing in-
structions at the address specified by its first argument. Create sets up the process, leav-
ing it ready to run, but temporarily suspended. It returns the process id of the new pro-
cess to its caller (in some languages create would be called a ‘‘function’’ instead of a
procedure). The process id is an integer that identifies the created process so it can be
referenced later. In the example, the main program passes the process id returned by
create to resume as an argument. Resume starts (unsuspends) the process so it begins ex-
ecuting. The distinction between normal procedure calls and process creation is this:

A procedure call does not return until the called procedure completes.
Create and resume return to the caller after starting the process, allow-
ing execution of both the calling procedure and the named procedure
to proceed concurrently.

All PC-Xinu processes execute independently and concurrently. In the example, the
first new process executes code in procedure prA, printing the letter `A´ continuously; the
second executes code in procedure prB, printing the letter `B´ continuously. Because
processes execute concurrently, the output is a mixture of `A´s and `B´s. What happens
to the main program? Remember that each independent computation is a process, so we
should ask, ‘‘What happens to the process executing the main program?’’ The process
executing the main program exits after the second call to resume because it has reached
the end of the main program. Its exit does not affect the new processes at all. They go
on spewing out `A´s and `B´s forever.

The example below shows that independent processes need not execute independent
code. Just as in the previous example, a single process begins executing the main pro-
gram. It calls create twice to start two new processes; both execute the code from pro-
cedure prntr.

/* ex3.c - xmain, prntr */

#include <conf.h>

#include <kernel.h>

/*--

* xmain -- example of 2 processes executing the same code concurrently

*--

*/

-- --

Sec. 1.4 An Operating System Viewed From The Outside 9

xmain()

{
int prntr();

resume(create(prntr, INITSTK, INITPRIO, "print A", 1, ’A’));

resume(create(prntr, INITSTK, INITPRIO, "print B", 1, ’B’));

}

/*--

* prntr -- print a character indefinitely

*--

*/

prntr(ch)

int ch;

{
while (1)

putc(CONSOLE, ch);

}

The two processes proceed concurrently without any effect on one another, even though
they happen to be executing the same piece of code. The key point here is that the notion
of process is different from the usual notions of program:

A program consists of code executed by a single process. In sharp con-
trast, processes are not uniquely associated with a piece of code; multi-
ple processes can execute the same code simultaneously.

This gives us some hint of the difficulty involved in designing operating systems. Not
only must each piece be designed to operate correctly by itself, the designer must also
guarantee that it does not interfere with other pieces, no matter how many processes exe-
cute simultaneously.

Although processes share code, it is important that each one have at least some local
variables. If every variable was shared by every process, chaos would result whenever
two processes tried to execute the same code. One can imagine what would happen if
two processes tried to use a single variable as the index of a for loop. To avoid such in-
terference the system creates an independent set of local variables for each process.

Create even allocates an independent set of arguments for each process, as the ex-
ample demonstrates. The code in file ex3.c shows how two processes are passed dif-
ferent arguments even though they execute the same code. In the call to create, the last
two arguments specify a count of arguments that follow, and a character that the system
passes to the newly created process. The first new process created is passed character
`A´, so it begins execution with formal parameter ch set to `A´. The second new process
begins with ch set to `B´. Although these processes execute the same code, they each
have their own copy of ch, just as recursive invocations of a procedure have their own

-- --

10 Introduction and Overview Chap. 1

copy of formal parameters. As in the earlier example, the output contains a mixture of
both letters. This points out another significant difference between programs and
processes:

Storage for local variables and procedure arguments is associated with
the process executing the procedure, not with the code in which they
appear.

In terms of the implementation, each process has its own stack of local variables, formal
parameters, and procedure calls.

1.4.5 Process Exit

The previous example consisted of a concurrent program with three processes: the
initial process, and the two processes started with the system call create. We said that
the initial process ceased when it reached the end of the code in the main program; this is
referred to as process exit. Other processes can exit in the same way, namely, by reach-
ing the end of the procedure in which they start (or by returning from it). Once the pro-
cess exits, it disappears forever; there is simply one less computation in progress.

You should not confuse process exit with normal procedure call and return or with
recursive procedure calls. Just like a sequential program, each process has its own stack
of procedure calls. Whenever it executes a call, the called procedure is pushed onto the
stack. Whenever it returns from a procedure, the procedure is popped off the stack. Pro-
cess exit occurs only when the process pops the last procedure (or main program) off its
stack.

The system routine kill provides another mechanism to terminate a process. In a
sense, kill is the inverse of create. It takes a process id as an argument and stops that pro-
cess immediately. A process can be killed at any time and at any level of procedure nest-
ing. When terminated, the process ceases execution, and its local variables disappear.
The entire record of local variables and procedure calls on the stack disappears as well,
of course. A process can exit by killing itself as easily as it can kill another process. To
do so, it uses system call getpid to obtain its own process id and kill to terminate:

kill(getpid());

When used in this manner, the call to kill never returns because the calling process exits.

1.4.6 Shared Memory

In PC-Xinu, each process has its own copy of local variables, formal parameters,
and procedure calls, but all processes share the set of global (external) variables. Sharing
data is sometimes convenient, but it can be dangerous, especially for programmers who
are unaccustomed to writing concurrent programs. Sharing also introduces the need for
more operating system services. Consider a simple example of two processes that want

-- --

Sec. 1.4 An Operating System Viewed From The Outside 11

to communicate through a shared integer, n.

/* ex4.c - xmain, produce, consume */

#include <conf.h>

#include <kernel.h>

int n=0; /* external variables are shared by all processes */

/*--

* xmain -- example of unsynchronized producer and consumer processes

*--

*/

xmain()

{
int produce(), consume();

resume(create(consumer,INITSTK,INITPRIO,"cons",0));

resume(create(producer,INITSTK,INITPRIO,"prod",0));

}

/*--

* produce -- increment n 2000 times and exit

*--

*/

produce()

{
int i;

for (i=1; i<=2000; i++)

n++;

}

/*--

* consume -- print n 2000 times and exit

*--

*/

consume()

{
int i;

for (i=1; i<=2000; i++)

printf("n is %d\n",n);

}

-- --

12 Introduction and Overview Chap. 1

In the code, global variable n is a shared integer, initialized to zero. The process execut-
ing produce loops 2000 times, incrementing n; we call this process the producer. The
process executing consume also loops 2000 times; it prints the value of n in decimal. We
call this process the consumer.

1.4.7 Synchronization

Try running ex4.c under PC-Xinu − its output may surprise you. Most programmers
suspect that the consumer will print most, perhaps all, of the values between 0 and 2000,
but it does not. In a typical run n has the value 0 for the first several lines, then possibly
another value; after that, its value is 2000. Even though the two processes run con-
currently, they do not require the same amount of time. The consumer process must for-
mat and write a line of output, operations that require hundreds of machine instructions.
Although formatting is expensive it does not dominate the timing; output does. The con-
sumer quickly fills the available output buffers and must wait for the characters to be sent
to the console before it can proceed. While the consumer waits, the producer runs. Be-
cause it executes only a few machine instructions per iteration, the producer runs through
most of its loop in the short time it takes the consumer process to print a few lines. After
a few output operations, the consumer process finds that n has the value 2000.

Production and consumption of data by independent processes is common. The
question arises, ‘‘How can the programmer synchronize producer and consumer
processes so that the consumer receives every datum produced?’’ Clearly, the producer
must wait for the consumer to access the datum. Likewise, the consumer must wait for
the producer to manufacture it. However, the mechanism for synchronization must be
designed carefully, because the crucial constraint is this:

In a single processor system, no process should use the CPU while
waiting for another.

A process that executes instructions while waiting for another is said to be busy waiting.
To understand our prohibition on busy waiting, think of the implementation. If a process
uses the CPU while waiting, the CPU cannot be executing other processes. At best, the
computation will be delayed unnecessarily and, at worst, the waiting process will use all
the CPU time and wind up waiting forever.

PC-Xinu avoids busy waiting by supplying coordination primitives called sema-
phores and system calls that operate on them. Each semaphore consists of an integer
value, initialized when the semaphore is created. The system call wait decrements a
semaphore and causes the process to delay if the result is negative. Signal performs the
opposite action, incrementing the semaphore and allowing a waiting process to continue.
To synchronize with semaphores, the producer and consumer need two semaphores, one
on which the consumer waits, and one on which the producer waits. Semaphores are
created dynamically with the system call screate, which takes the desired initial count as
an argument, and returns an integer by which the semaphore is known.

-- --

Sec. 1.4 An Operating System Viewed From The Outside 13

In the example below, the main process creates two semaphores, consumed and pro-
duced, and passes them as arguments to the processes it creates. Because the semaphore
named produced begins with a count of 1, wait will not block the first time it is called in
cons2. So, the consumer is free to print the initial value of n. However, semaphore con-
sumed begins with a count of 0, so the first call to wait in prod2 blocks. In effect, the
producer waits for semaphore consumed before incrementing n to guarantee that the con-
sumer has printed it. When the example runs, the consumer prints all values of n from 0
through 1999.

/* ex5.c - xmain, prod2, cons2 */

#include <conf.h>

#include <kernel.h>

int n=0; /* external variables are shared by all processes */

/*--

* xmain -- producer and consumer processes synchronized with semaphores

*--

*/

xmain()

{
int prod2(), cons2();

int produced, consumed;

consumed = screate(0);

produced = screate(1);

resume(create(cons2,INITSTK,INITPRIO,"cons",2,consumed,produced));

resume(create(prod2,INITSTK,INITPRIO,"prod",2,consumed,produced));

}

/*--

* prod2 -- increment n 2000 times, waiting for it to be consumed

*--

*/

prod2(consumed,produced)

int consumed,produced;

{
int i;

for (i=1; i<=2000; i++) {
wait(consumed);

n++;

signal(produced);

-- --

14 Introduction and Overview Chap. 1

}
}

/*--

* cons2 -- print n 2000 times, waiting for it to be produced

*--

*/

cons2(consumed,produced)

int consumed,produced;

{
int i;

for (i=1; i<=2000; i++) {
wait(produced);

printf("n is %d\n",n);

signal(consumed);

}
}

1.4.8 Mutual Exclusion

Semaphores provide another important purpose in PC-Xinu, namely, mutual exclu-
sion. Two or more processes engage in mutual exclusion when they cooperate so that
only one of them obtains access to a resource at a given time. For example, suppose two
executing processes each, from time to time, want to insert an item into a linked list. If
they both happen to access the list concurrently, they could leave pointers set incorrectly.
Synchronization is not the answer because the two processes do not want to alternate
accesses; they merely want to exclude each other.

To use mutual exclusion for control of a resource like a linked list, the processes
must create a semaphore (with an initial count of 1). Before accessing the resource, each
process executes wait on the semaphore and calls signal after it has completed. Often,
the calls to wait and signal can be imbedded at the beginning and end of a procedure
designed to perform the update. For example, file ex6.c shows an array and a procedure
to add items to it:

/* ex6.c - additem */

int mutex; /* assume initialized with screate */

int a[100];

int n = 0;

/*--

* additem -- obtain exclusive access to array ’a’ and add item to it

-- --

Sec. 1.4 An Operating System Viewed From The Outside 15

*--

*/

additem(item)

{
wait(mutex);

a[n++] = item;

signal(mutex);

}

The assumption here is that a process created semaphore mutex using screate before any
process called additem.

The code in file ex6.c provides a final illustration of the difference between the way
one writes programs in sequential and concurrent environments. In the world of sequen-
tial programs, a procedure often acts to isolate changes to a data structure. By localizing
code that changes a data structure in one procedure, the programmer gains a sense of
security − only a small amount of code need be checked for correctness because nothing
else in the program will interfere with the data structure. In a multiprocess environment,
however, isolating the code into a single procedure is insufficient. The programmer must
also guarantee that its execution is exclusive because interference can come from some
other process executing the same procedure!

1.5 An Operating System Viewed From The Inside

If designed well, the interior of an operating system can be as elegant and clean as
the best sequential program. The design described in this book achieves elegance by par-
titioning the system functions into roughly eight major components and organizing those
components into a layered hierarchy. Examining this particular system is especially
helpful in understanding layered organization because it demonstrates how all the func-
tions in a conventional operating system fit together.

Figure 1.1 shows an overview of the components we will discuss, as well as their ul-
timate organization. Although the operating system structure is shown in final form, it
was designed one layer at a time. At the heart of the system lies the scheduler and con-
text switch. They are responsible for switching the CPU among the processes that are
ready to run. Procedures in the next layer constitute the rest of the process manager, pro-
viding primitives to create, kill, suspend, and resume processes, and to manage memory.

-- --

16 Introduction and Overview Chap. 1

HARDWARE

MEMORY MANAGER

PROCESS MANAGER

PROCESS COORDINATION

INTERPROCESS COMMUNICATION

REAL-TIME CLOCK MANAGER

DEVICE MANAGER AND DEVICE DRIVERS

INTERMACHINE COMMUNICATION

FILE SYSTEM

USER PROGRAMS

Figure 1.1 The layering of components in PC-Xinu

Just beyond the process management layer comes the process coordination layer that im-

-- --

Sec. 1.5 An Operating System Viewed From The Inside 17

plements semaphores. Following that comes the layer that provides message passing.
Next come the procedures for real-time clock management that allow, among other
things, processes to delay for a specified time. On top of the real-time clock layer lies a
layer of device-independent input and output routines. Above the device routines, a layer
implements machine-to-machine communication, and the layer above that implements a
file system. This text does not include the network communication code.

The internal layering of a system should not be confused with the services it pro-
vides. The components are organized into layers to make the design and implementation
cleaner; layering does not restrict procedure calls at run-time. Once the system has been
built, procedures in higher layers can call routines like wait and signal that reside in the
process coordination layer directly, just as they can call routines like putc that reside in
outer layers. Thus, the layered structure describes only the implementation, not the flow
of control.

The remainder of this book proceeds through the design of a system that follows the
layered organization shown above. We consider the layers in roughly the same order as
they are designed and built, from the innermost outward. Although this may seem awk-
ward at first, the organization should start to seem meaningful by Chapter 6. By the end
of Chapter 13, we will have designed a minimal kernel capable of supporting programs
like those in the examples above. The design will include a complete core of operating
system routines (including windowing and a file system) by the end of Chapter 18.

1.6 Summary

Operating system design has become a task expected of systems programmers. Un-
like conventional, sequential programs, operating systems support a broad notion of com-
putation in which multiple, independent processes execute concurrently and provide
high-level abstract services. To design operating systems intelligently, programmers
must appreciate concurrent processing and the services like mutual exclusion and process
synchronization needed to support it.

The examples given here show how programs use a few of the basic operating sys-
tem services. They illustrate the differences between sequential programs and con-
currently executing processes, and show how processes begin and end in PC-Xinu. The
examples illustrating the use of semaphores show how processes synchronize, and how
they cooperate to guarantee mutual exclusion.

This introduction has focused on the exterior of an operating system, showing how
programs use the services it provides. Later chapters concentrate on the interior of an
operating system, showing how to design and build it, instead of how to use it. They
proceed through the system one layer at a time, beginning with the raw hardware, and
ending with a working system.

-- --

18 Introduction and Overview Chap. 1

FOR FURTHER STUDY

Good surveys of operating system facilities can be found in Calingaert [1982], Ha-
bermann [1976], Lister [1984], Peterson and Silberschatz [1983], and Tsichritzis and
Bernstein [1974]. Warwick [1970] provides a somewhat older view. Books by Brinch
Hansen [1973], Habermann [1976], Holt [1983], Bic and Shaw [1988], and Lister [1984]
all consider design issues. Readers interested in more information will find that journal
papers provide deeper treatments of the subject. Selected references can be found at the
end of each chapter, and in the Bibliography.

Details about PC-Xinu system calls and library routines are given throughout the
text. They are summarized in the manual in Appendix 2, which also describes the
development environment.

EXERCISES

1.1 Explore the system calls available on your favorite operating system, and write a few pro-
grams that use them.

1.2 The program in file ex3.c has 3 processes running at one point. Modify it to use only 2
processes.

1.3 Under PC-Xinu, the output from the programs in files ex2.c and ex3.c usually consists of al-
ternate A’s and B’s. Speculate about the implementation of putc. What happens if one of the
processes runs at a higher priority than the other?

1.4 Test the program in file ex4.c repeatedly. Does it always print the same number of zeroes?
If it prints a value of n other than 0 or 2000, is this value always the same?

1.5 Modify the producer-consumer code in file ex5.c to use a buffer of 15 integers. Have the
producer write integers 1, 2, ... in successive locations of the buffer, wrapping around to the
beginning after filling the last slot, and have the consumer read and print them. Do you ap-
preciate how to use counting semaphores with a buffer of size k > 1?

1.6 In file ex5.c, the semaphore consumed is created with a count of 1. Modify the code so con-
sumed is created with a count of 0, and have the producer wait on it after signalling pro-
duced. Does it affect the output?

1.7 Write programs to find out what happens to a process that executes wait on a nonexistent
semaphore or an existing semaphore that no other process signals.

