
12

An Example Device Driver

The previous chapter discussed high-level I/O operations and the device switch
table, devtab, which forms the general framework linking interrupts, devices, and device
driver routines. This chapter explores device driver routines for the CONSOLE device
consisting of the PC keyboard and video display. Seeing an example will help you
understand how device drivers operate and appreciate how the device switch framework
eases the task of configuring devices and device drivers into the system.

12.1 The Device Type Tty

PC-Xinu uses the name tty to refer to conventional ‘‘computer terminals.’’ Each tty
device has a keyboard capable of transmitting characters to the computer and an output
device capable of displaying characters received from the computer. In the PC, the key-
board and video display circuitry are integrated into the system; other tty-type devices
may be attached to the computer’s asynchronous communication lines. The ‘‘tty’’ termi-
nology was borrowed from older systems that used Teletype devices as terminals.

In broad terms, the task of the tty device driver is to map operations like reading or
writing characters to operations that transmit characters to the display and receive char-
acters from the keyboard. In practice, the driver communicates with the BIOS, request-
ing it to send characters or receive them. To minimize interference between I/O and run-
ning processes, the driver creates and uses special-purpose processes to transmit charac-
ters to the screen and to receive characters from the keyboard. In addition, it coordinates
requests for I/O with the speed of the device. The latter task is especially important for
asynchronous interrupt-driven devices because character transmission times are often
several orders of magnitude slower than processing speed, something few programmers
appreciate until they write device drivers.

187



-- --

188 An Example Device Driver Chap. 12

The tty drivers operate from parameters so they can be used in a variety of confi-
gurations. Several of the parameters control character ‘‘echo.’’ The PC operates in what
is known as full-duplex mode. In this mode, the BIOS does not automatically display
characters as the user types them; rather, the device driver transmits to the display every
character received from the keyboard, so the user can see what has been typed. Howev-
er, not all tty-type terminals need character echo. Those that operate in half-duplex mode
display keystrokes automatically. If the device driver echoes the characters received
from a half-duplex terminal, two copies appear on the display. So, the tty driver keeps a
parameter that tells whether characters should echo or not. Being able to control charac-
ter echo is also important for full-duplex devices since it permits turning off the echo
feature during entry of sensitive information such as passwords. The tty driver keeps
other parameters that tell it such things as whether or not to echo unprintable characters
as a printable combination.

Most of the tty parameters will be obvious to anyone who has used a terminal, but
readers who are unfamiliar with terminal hardware may puzzle over those that deal with
moving onto new lines. The terminal display unit recognizes two unprintable characters
that control cursor movement. RETURN, commonly called carriage return, moves the
cursor left to the beginning of the current line (without spacing vertically). NEWLINE,
sometimes called line feed, moves the cursor vertically downward one line (without mov-
ing horizontally). A display unit must receive both NEWLINE and RETURN to move to
the start of the next line. Keyboards have separate keys that generate RETURN and
NEWLINE, but naming is nonstandard so they might be labeled ‘‘return,’’ ‘‘line feed,’’
‘‘enter,’’ ‘‘newline,’’ or ‘‘end line.’’ On the PC, the RETURN key is labeled ‘‘Return,’’
and NEWLINE is generated by a Ctrl-J combination; the ‘‘Enter’’ key also generates the
RETURN code.

Although terminals send and interpret NEWLINE and RETURN separately, pro-
grams like to deal with a single end-of-line character for both input and output. In PC-
Xinu, NEWLINE is the favored end-of-line character, denoted ‘‘\n’’ in string and charac-
ter constants. To simplify programming, the tty driver recognizes both RETURN and
NEWLINE according to several parameters. A parameter denoted icrlf controls whether
the driver maps RETURN to NEWLINE when received from the keyboard. Another
parameter, ocrlf, controls whether the driver inserts RETURN in the output stream when-
ever a program writes NEWLINE.

12.2 Upper And Lower Halves Of The Device Driver

Like most device drivers, the tty driver routines can be partitioned into two sets: the
upper-half and the lower-half. User processes call upper-half routines (indirectly through
devtab) to read or write characters. Upper-half routines do not manipulate devices
directly. Instead, they enqueue requests for transfer and rely on routines in the lower-half
to perform transfers later. This partition, difficult to appreciate at first, lies at the heart of
driver design − it is fundamental because it decouples normal processing from hardware
characteristics.



-- --

Sec. 12.2 Upper And Lower Halves Of The Device Driver 189

The queue of transfer requests is the primary data structure that connects high-level
calls to actions on the device. Each device has its own queue of requests, and the con-
tents of elements on the queue depends on the device characteristics. Requests for dev-
ices like disks must specify the direction of transfer (read or write), the location of the
data, and its length. Requests for character transfer are much simpler; usually, they only
consist of the character itself.

Besides the queue of requests, the driver may need space for a buffer. Drivers use
buffer space to record outgoing data from the time the user requests it be sent until the
time the device receives it. They also use buffer space to record incoming data from the
time the device deposits it until a user program requests it.

Buffers are important for several reasons. First, the driver can accept incoming data
and place it in a buffer before a user process reads it. This is important for devices like a
terminal where the user may start to type at any time. Second, devices like disks often
transfer data in large blocks. The system must have a buffer large enough to hold all that
the device transfers, even if the user only needs one character. Third, buffering permits
the driver to perform I/O concurrently with user processes. When a user process writes
data, the driver copies it into a buffer and allows the user process to continue executing,
while it transfers the data from the buffer to the device.

The tty driver described here uses two circular character buffers per terminal, one
for input and the other for output. Output operations deposit characters to be written in
the output buffer and return to their caller. Meanwhile, the output process picks up the
next character from the output buffer and sends the character to the display screen.

Input works the other way around. Whenever the keyboard receiver interrupts, sig-
naling that it has received a character, the interrupt dispatcher calls the input interrupt
routine. The input interrupt handler notifies the lower-half input process which reads the
waiting character and deposits it in the circular input buffer. When a process calls an
upper-half routine to read characters, the upper-half routine takes them from the input
buffer, waiting for more input only if insufficient characters remain in the buffer.

Ideally, the two halves of a driver communicate only through the shared buffers:

Upper-half routines enqueue requests for data transfer or device con-
trol; they do not interact with devices directly. Lower-half routines
transfer data from buffers or control devices; they do not interact with
user programs directly.

In practice, the two halves of the driver may need to do more than manipulate the
shared data. For example, the upper-half may need to awaken the lower-half output pro-
cess when it deposits output in the buffer. It may also happen that nothing has been
typed when a process tries to read, or the available buffer space has been filled when a
process tries to write. In such cases, the upper and lower halves must coordinate, stop-
ping a process that is trying to write until space becomes available, or starting a process
that is waiting for input as soon as the next character arrives.



-- --

190 An Example Device Driver Chap. 12

12.3 Synchronization Of The Upper And Lower Halves

At first glance, synchronization between the upper and lower halves of a driver ap-
pears to be an instance of ‘‘producer/consumer’’ coordination that can be solved nicely
with semaphores. The upper-half output routines produce characters that the lower-half
output routines consume, while the lower-half input routines produce characters that the
upper-half input routines consume. But there is an added twist. Input poses no problem
because user processes that call the upper-half can wait for the lower-half to ‘‘produce’’
an input character, and lower-half routines can signal each time they read (‘‘produce’’) a
character. Output is not as simple, however. Suppose the lower-half process waits for
characters which the upper-half produces. Since the lower-half is likely to consume
characters slower than the upper-half is able to produce them, the output buffer will be-
come overrun.

There is another reason for not viewing the upper-half output driver as the producer
and the lower-half as the consumer. Suppose the lower-half output driver is redesigned
to be interrupt-driven, which would be the case when working with asynchronous dev-
ices. Lower-half routines, which operate at interrupt time, cannot wait for an upper-half
routine to ‘‘produce’’ an output character. (This restriction, you will recall, is a conse-
quence of the interrupt structure: calling wait at interrupt time might lead to a situation in
which no process remains ready to run.)

How can the lower and upper halves coordinate if the lower-half cannot be viewed
as the ‘‘consumer,’’ waiting for characters produced by the upper-half? Surprisingly,
semaphores can easily solve the problem. The trick is to turn around the call to wait by
changing the purpose of the semaphore. Instead of having a lower-half routine wait for
the upper-half to produce characters, our design has the upper-half wait for space in the
buffer. Thus, the lower-half never ‘‘consumes’’ anything: the lower-half input routine
‘‘produces’’ characters, and the lower-half output routine ‘‘produces’’ space in the
buffer.

12.4 Control Block And Buffer Declarations

Each device being used as a tty must have its own pair of input and output sema-
phores and its own input and output buffers. All of this data is kept in a structure com-
monly called a control block; there is a tty control block for each tty device. Along with
the buffers and semaphores, the control block also contains the parameters mentioned
earlier. Although these may seem confusing, they are similar to the parameters provided
on other systems.

The code in file tty.h contains the C code for defining the tty control block. In the
code, the definition is given in the structure named tty.



-- --

Sec. 12.4 Control Block And Buffer Declarations 191

/* tty.h */

#include <window.h> /* window definitions */

#define OBMINSP 20 /* min space in buffer before */

#define EBUFLEN 32 /* size of echo queue */

#define TTYOPRIO 100 /* priority of tty output */

#define TTYIPRIO (TTYOPRIO+1) /* priority of tty input */

/* size constants */

#ifndef Ntty

#define Ntty 1 /* number of serial tty lines */

#endif

#ifndef IBUFLEN

#define IBUFLEN 128 /* num. chars in input queue */

#endif

#ifndef OBUFLEN

#define OBUFLEN 64 /* num. chars in output queue */

#endif

/* mode constants */

#define IMRAW ’R’ /* raw mode => nothing done */

#define IMCOOKED ’C’ /* cooked mode => line editing */

#define IMCBREAK ’K’ /* honor echo, etc, no line edit*/

#define OMRAW ’R’ /* raw mode => normal processing*/

struct tty { /* tty line control block */

int ihead; /* head of input queue */

int itail; /* tail of input queue */

char ibuff[IBUFLEN]; /* input buffer for this line */

int icnt;

int isem; /* input semaphore */

int ohead; /* head of output queue */

int otail; /* tail of output queue */

char obuff[OBUFLEN]; /* output buffer for this line */

int ocnt;

int osem; /* output semaphore */

int odsend; /* sends delayed for space */

int ehead; /* head of echo queue */

int etail; /* tail of echo queue */

char ebuff[EBUFLEN]; /* echo queue */

int ecnt;



-- --

192 An Example Device Driver Chap. 12

char imode; /* IMRAW, IMCBREAK, IMCOOKED */

Bool iecho; /* is input echoed? */

Bool ieback; /* do erasing backspace on echo?*/

Bool evis; /* echo control chars as ˆX ? */

Bool ecrlf; /* echo CR-LF for newline? */

Bool icrlf; /* map ’\r’ to ’\n’ on input? */

Bool ierase; /* honor erase character? */

char ierasec; /* erase character (backspace) */

Bool ikill; /* honor line kill character? */

char ikillc; /* line kill character */

int icursor; /* current cursor position */

Bool oflow; /* honor ostop/ostart? */

Bool oheld; /* output currently being held? */

char ostop; /* character that stops output */

char ostart; /* character that starts output */

Bool ocrlf; /* output CR/LF for LF ? */

char ifullc; /* char to send when input full */

int dnum; /* device number of this window */

int oprocnum; /* output server process id */

int wstate; /* window state (window) */

/* input server process id (tty)*/

int seq; /* sequence changed at creation */

int colsiz; /* logical window column size */

int rowsiz; /* logical window row size */

char attr; /* character attributes */

CURSOR curcur; /* current cursor pos. in win */

CURSOR topleft; /* top left corner of window */

CURSOR botright; /* bottom right corner of window*/

Bool hasborder; /* does window have a border */

};
extern struct tty tty[];

#define BACKSP ’\b’

#define BELL ’\07’

#define ATSIGN ’@’

#define BLANK ’ ’

#define NEWLINE ’\n’

#define RETURN ’\r’

#define TAB ’\t’

#define TABSTOP 8

#define STOPCH ’\023’ /* control-S stops output */

#define STRTCH ’\021’ /* control-Q restarts output */

#define UPARROW ’ˆ’



-- --

Sec. 12.4 Control Block And Buffer Declarations 193

/* special function keys */

#define SPECKEY 0x100 /* special function key offset */

#define FKEY 0x13b /* F1 */

#define CFKEY 0x15e /* control-F1 */

#define PSNAPK 0 /* offset for process snapshot */

#define TSNAPK 1 /* offset for tty snapshot */

#define DSNAPK 2 /* offset for disk snapshot */

/* ttycontrol function codes */

#define TCSETBRK 1 /* turn on BREAK in transmitter */

#define TCRSTBRK 2 /* turn off BREAK " " */

#define TCNEXTC 3 /* look ahead 1 character */

#define TCMODER 4 /* set input mode to raw */

#define TCMODEC 5 /* set input mode to cooked */

#define TCMODEK 6 /* set input mode to cbreak */

#define TCICHARS 8 /* return number of input chars */

#define TCECHO 9 /* turn on echo */

#define TCNOECHO 10 /* turn off echo */

#define TFULLC BELL /* char to echo when buffer full*/

/* messages passed to output process */

#define TMSGOK 0 /* all OK */

#define TMSGEFUL 1 /* echo buffer overflow */

extern int kprintf(); /* formatted console print */

extern int printf(); /* XON/XOFF console print */

extern int wputcsr(); /* put cursor routine */

extern int winofcur; /* cur window of cursor */

The key components of the tty structure are an input buffer, ibuff, an output buffer, obuff,
and an echo buffer, ebuff. Each buffer is an array (the exercises discuss this choice).
Head and tail pointers point to the next location in the array to fill and the next location in
the array to empty, respectively. Characters are always inserted at the head and taken
from the tail, independent of whether they flow from the upper-half to the lower-half or
vice versa. The driver treats each buffer as a circular list, with location zero following
the last location. Initially, the head and tail both point to location zero, but there is never
any confusion about whether the buffer is completely empty or completely full because
the count of characters is controlled by semaphores, isem and osem, as discussed above.

There is one tty control block per device; they are kept in an array tty, which is in-
dexed by the minor device number. The system configuration program sets constant Ntty
to the number of tty devices. It also assigns each tty device a minor device number from
0 through Ntty-1 and places the minor device number in the device switch table. In PC-



-- --

194 An Example Device Driver Chap. 12

Xinu, the tty devices with minor device numbers greater than zero are reserved for win-
dows on the video screen; the window architecture is discussed in Chapter 14. Both the
lower-half processes and driver routines in the upper-half use the minor device number
as an index into the array tty. Thus, the minor device number forms a crucial link
between the device id and the control block associated with that device.

Since the upper-half routines need to know which lower-half output process to noti-
fy when an output character arrives, the lower-half output process id is kept in the oproc-
num field in the tty structure. Similarly, the wstat field is used to hold the process id of
the lower-half input process.

12.5 Upper-Half Tty Input Routines

The routines ttygetc, ttyputc, ttyread, and ttywrite form the basis of the upper-half of
the tty driver. They correspond to the operations getc, putc, read, and write described in
Chapter 9. The simplest driver routine is ttygetc.

/* ttygetc.c - ttygetc */

#include <conf.h>

#include <kernel.h>

#include <tty.h>

#include <io.h>

/*------------------------------------------------------------------------

* ttygetc -- read one character from a tty device

*------------------------------------------------------------------------

*/

ttygetc(devptr)

struct devsw *devptr;

{
int ps;

char ch;

struct tty *iptr;

disable(ps);

iptr = &tty[devptr->dvminor];

wait(iptr->isem); /* wait for a character in buff */

ch = iptr->ibuff[iptr->itail++];

--iptr->icnt;

if (iptr->itail >= IBUFLEN)

iptr->itail = 0;

restore(ps);

return(ch);

}



-- --

Sec. 12.5 Upper-Half Tty Input Routines 195

When called, ttygetc first retrieves the minor device number from the device switch
table and uses it as an index into array tty to locate the correct control block. It then exe-
cutes wait on the input semaphore, isem, until the lower-half deposits a character in the
buffer. When wait returns, ttygetc extracts the next character from the input buffer; up-
dates the tail pointer to make it ready for subsequent extractions; updates the count, icnt,
of characters in the buffer; and returns.

Recall that the read operation is used to obtain more than one character in a single
operation. The tty driver routine that implements read is called ttyread; it is shown
below. Ttyread is not conceptually more difficult than ttygetc − only the programming
details make it appear complex.



-- --

196 An Example Device Driver Chap. 12

/* ttyread.c - ttyread */

#include <conf.h>

#include <kernel.h>

#include <tty.h>

#include <io.h>

/*------------------------------------------------------------------------

* ttyread -- read one or more characters from a tty device

*------------------------------------------------------------------------

*/

ttyread(devptr, buff, count)

struct devsw *devptr;

char *buff;

int count;

{
register struct tty *ttyp;

int ps;

int avail, nread;

if ( count<0 )

return(SYSERR);

disable(ps);

ttyp = &tty[devptr->dvminor];

avail = scount( ttyp->isem );

if ( (count = (count==0 ? avail : count)) == 0) {
restore(ps);

return(0);

}
nread = count;

if ( count <= avail )

readcopy(buff, ttyp, avail, count);

else {
if (avail > 0) {

readcopy(buff, ttyp, avail, avail);

buff += avail;

count -= avail;

}
for ( ; count>0 ; count--)

*buff++ = ttygetc(devptr);

}
restore(ps);

return(nread);

}



-- --

Sec. 12.5 Upper-Half Tty Input Routines 197

The semantics of how read operates on tty devices illustrates how the I/O primitives
can be adapted to a variety of devices. Often, it is useful to read all the characters wait-
ing in the input queue, even though the calling program does not know how many (if
any) are waiting. To permit such an operation without introducing additional I/O primi-
tives, the tty driver applies an unusual interpretation to what might otherwise be con-
sidered an illegal operation: it interprets requests to read zero characters as requests to
‘‘read all characters that are waiting.’’

The code in ttyread shows how the zero length requests are changed upon entry into
requests for exactly the number of characters that are waiting, based on the current count
of the input semaphore, isem. After the special case has been handled, ttyread proceeds
to obtain characters and move them to the specified location. If enough characters are
available to satisfy the request, ttyread copies them directly to the user’s buffer with
readcopy and returns. If the user requests more characters than are waiting, ttyread
copies out those that are available and calls ttygetc repeatedly to get one additional char-
acter at a time until the request has been satisfied. The code for readcopy is in file
readcopy.c:



-- --

198 An Example Device Driver Chap. 12

/* readcopy.c - readcopy */

#include <conf.h>

#include <kernel.h>

#include <tty.h>

#include <io.h>

/*------------------------------------------------------------------------

* readcopy -- high speed copy from tty buffer into user’s buffer

*------------------------------------------------------------------------

*/

readcopy(buff,ttyp,avail,count)

register char *buff;

struct tty *ttyp;

int avail,count;

{
register char *qtail; /* copy variable */

int ct, i;

i = ttyp->itail;

qtail = &ttyp->ibuff[i]; /* address of tail */

for ( ct=count; ct>0; ct-- ) {
*buff++ = *qtail++;

if ( ++i >= IBUFLEN ) { /* wrap-around */

i=0;

qtail = ttyp->ibuff;

}
}
ttyp->itail = i;

ttyp->icnt -= count;

sreset(ttyp->isem,avail-count);

}

12.6 Upper-Half Tty Output Routines

The upper-half output routines are almost as simple as the upper-half input routines.
Ttyputc waits for space in the output buffer; deposits the character in the output queue,
obuff; increments the head pointer, ohead; and updates the buffer count, ocnt.



-- --

Sec. 12.6 Upper-Half Tty Output Routines 199

/* ttyputc.c - ttyputc */

#include <conf.h>

#include <kernel.h>

#include <tty.h>

#include <io.h>

/*------------------------------------------------------------------------

* ttyputc -- write one character to a tty device

*------------------------------------------------------------------------

*/

ttyputc(devptr, ch )

struct devsw *devptr;

char ch;

{
struct tty *iptr;

int ps;

iptr = &tty[devptr->dvminor];

disable(ps);

wait(iptr->osem); /* wait for space in queue */

iptr->obuff[iptr->ohead++] = ch;

++iptr->ocnt;

if (iptr->ohead >= OBUFLEN)

iptr->ohead = 0;

restore(ps);

sendn(iptr->oprocnum,TMSGOK); /* wake up the tty process */

return(OK);

}

Just before it returns, ttyputc sends a message to the tty lower-half output process,
whose process id is in oprocnum. This guarantees that the lower-half will awaken to
transfer the character just inserted in the buffer. If the lower-half process is ready or
current, it will receive the message whenever it finishes its current output operations. If
it is RECEIVING − waiting for a message − it will resume as soon as it gets the opportun-
ity in the scheduling priority. Ttyputc uses sendn, which does not reschedule when the
message is sent, rather than send which does reschedule. This is done to avoid costly
rescheduling at each character.

The lower-half output process runs as long as there are characters in the output and
echo buffers, so it may not be necessary to send it a message every time a character is ad-
ded to the buffer. Sending the process a message when it is already running is innocu-
ous; therefore, blindly sending a message at every character is less expensive than testing
whether it is necessary. Sending messages is the only way upper-half output routines
awaken lower-half output routines to initiate transfers. Upper-half routines do not call
lower-half routines directly, nor do they initiate character transmission.



-- --

200 An Example Device Driver Chap. 12

The tty driver also supports multiple-byte transfers (writes). The appropriate driver
routine is ttywrite. Ttywrite copies characters into the output buffer and starts the lower-
half output process. To eliminate overhead, ttywrite determines how much space is avail-
able in the output buffer. If enough space remains, ttywrite copies the specified data into
the buffer and returns. Otherwise, it fills the available space and then calls ttyputc to add
the remaining characters one-by-one. Files ttywrite.c and writcopy.c contain the code.

/* ttywrite.c - ttywrite */

#include <conf.h>

#include <kernel.h>

#include <tty.h>

#include <io.h>

/*------------------------------------------------------------------------

* ttywrite -- write one or more characters to a tty device

*------------------------------------------------------------------------

*/

ttywrite(devptr, buff, count)

struct devsw *devptr;

char *buff;

int count;

{
register struct tty *ttyp;

int avail;

int ps;

if (count < 0)

return(SYSERR);

if (count == 0)

return(0);

disable(ps);

ttyp = &tty[devptr->dvminor];

avail = scount( ttyp->osem );

if ( avail >= count) {
writcopy(buff, ttyp, avail, count);

sendn(ttyp->oprocnum,TMSGOK);

} else {
if (avail > 0) {

writcopy(buff, ttyp, avail, avail);

sendn(ttyp->oprocnum,TMSGOK);

buff += avail;

count -= avail;

}



-- --

Sec. 12.6 Upper-Half Tty Output Routines 201

for (; count>0 ; count--)

ttyputc(devptr, *buff++);

}
restore(ps);

return(count);

}

/* writcopy.c - writcopy */

#include <conf.h>

#include <kernel.h>

#include <tty.h>

#include <io.h>

/*------------------------------------------------------------------------

* writcopy -- high-speed copy from user’s buffer into tty buffer

*------------------------------------------------------------------------

*/

writcopy(buff, ttyp, avail, count)

register char *buff;

struct tty *ttyp;

int avail, count;

{
register char *qhead;

int ct, i;

i = ttyp->ohead;

qhead = &ttyp->obuff[i];

for ( ct=count; ct>0; ct-- ) {
*qhead++ = *buff++;

if ( ++i >= OBUFLEN ) { /* wrap-around */

i=0;

qhead = ttyp->obuff;

}
}
ttyp->ocnt += count;

ttyp->ohead = i;

sreset(ttyp->osem, avail-count);

}



-- --

202 An Example Device Driver Chap. 12

12.7 Lower-Half Tty Driver Routines

The lower-half of the tty driver performs the real work of carrying out the physical
input and output operations and fielding interrupts. It consists of three procedures: the
output server, ttyoproc; the input server, ttyiproc; and the input (keyboard) interrupt rou-
tine, ttyiin. First, we will consider the output server routine, found in file ttoproc.c:

/* ttyoproc.c - ttyoproc */

#include <conf.h>

#include <kernel.h>

#include <tty.h>

#include <io.h>

#include <vidio.h>

/*------------------------------------------------------------------------

* ttyoproc -- lower-half tty device driver process for console output

*------------------------------------------------------------------------

*/

PROCESS ttyoproc()

{
register struct tty *iptr;

int ct;

int ps;

char ch;

Bool enl,onl;

int rcvchr();

iptr = &tty[0]; /* pointer to tty structure */

onl = enl = FALSE;

disable(ps);

for (;;) { /* endless loop for process */

if (enl) { /* must send linefeed */

enl = FALSE;

wtty(NEWLINE);

continue;

}
/* look at the echo buffer */

if ( iptr->ecnt ) { /* any chars in echo buffer? */

ch = iptr->ebuff[iptr->etail++];

--iptr->ecnt;

if (iptr->etail >= EBUFLEN)

iptr->etail = 0;

if ((ch==RETURN | | ch==NEWLINE) && iptr->ecrlf) {



-- --

Sec. 12.7 Lower-Half Tty Driver Routines 203

enl = TRUE;

ch = RETURN;

}
wtty(ch);

continue;

}
if (iptr->oheld) {

rcvchr();

continue;

}
if (onl) { /* must send linefeed */

onl = FALSE;

wtty(NEWLINE);

continue;

}
if ( (ct=iptr->ocnt) > 0 ) {

ch = iptr->obuff[iptr->otail++];

--iptr->ocnt;

if (iptr->otail >= OBUFLEN)

iptr->otail = 0;

if ( ct < (OBUFLEN-OBMINSP) && iptr->odsend == 0 )

signal(iptr->osem);

else if ( ++(iptr->odsend) == OBMINSP ) {
iptr->odsend = 0;

signaln(iptr->osem, OBMINSP);

}
if ((ch==RETURN | | ch==NEWLINE) && iptr->ocrlf) {

onl = TRUE;

ch = RETURN;

}
wtty(ch);

continue;

}
rcvchr();

}
}

/*------------------------------------------------------------------------

* rcvchr -- wait for another character to arrive

*------------------------------------------------------------------------

*/

LOCAL rcvchr()

{
struct tty *iiptr;



-- --

204 An Example Device Driver Chap. 12

if ( winofcur != 0 ) {
iiptr = &tty[winofcur];

wputcsr(iiptr,iiptr->curcur);

}
if ( receive() == TMSGEFUL ) {

wtty(BELL);

}
}

Remember while you read the code, the ttyoproc process is created when the tty driver is
initialized, and the upper-half tty output routines send it a message whenever an output
character is enqueued.

The driver works as an infinite loop, working as long as output must be performed.
Processing output is straight-forward. The driver either displays a character from the
echo buffer, a character from the output buffer, or does nothing at all. Ttyoproc gives
priority to characters waiting in the echo buffer, ebuff. If ebuff is nonempty, ttyoproc
takes a character from it and writes the character to the video screen using the wput rou-
tine; otherwise, ttyoproc proceeds with normal processing.

Normal output processing consists of selecting a character from the output buffer,
obuff, and writing the character to the video screen. Before doing so, ttyoproc checks the
tty parameter oheld to see whether output has been stopped. When ttyoproc finds oheld
set, it waits for a message from the upper-half without sending more characters. Because
ttyoproc will not be awakened until a message is received, some other routine must even-
tually clear oheld and resume output processing. As we will see, the input handler sets
oheld when it detects the ‘‘stop’’ character and clears oheld when it detects any other
character. By convention, the stop character is Ctrl-S; the user types it to suspend output
(e.g., to read something before it moves off the screen). While any typed character will
resume output, the conventional start character is Ctrl-Q; typing it will resume output
without taking any additional action. Usually, neither the start nor stop characters are
deposited in the input buffer.

In addition to the processing mentioned above, ttyoproc honors the tty parameters
ocrlf and ecrlf. When ecrlf is nonzero, it indicates that echoed NEWLINE characters
should map to the combination RETURN plus NEWLINE. To write the extra NEWLINE
character following the RETURN, ttyoproc maintains the flag enl to determine if it should
output a NEWLINE after having written a RETURN. Similarly, the onl flag controls ex-
pansion of NEWLINE characters in the output buffer. Note that echoed NEWLINEs have
priority over normal output NEWLINEs.

The lower-half may find the buffer empty if it has sent the last waiting character to
the device. This is not an error, just an indication that the process can wait for a message
to indicate that more output has been generated. So when it finds nothing to send,
ttyoproc calls the local recvchr routine, which ultimately calls receive. If the cursor be-
longs in a different window, Recvchr also positions the cursor appropriately.



-- --

Sec. 12.7 Lower-Half Tty Driver Routines 205

Ttyoproc initially turns interrupts off with a call to disable and never turns them
back on. Much of the processing in ttyoproc involves manipulating buffers, which must
be done with interrupts disabled. When there are no characters to be processed, ttyoproc
is waiting for a message. Since receive changes the state of the output process to RE-
CEIVING and reschedules, the resulting context switch will eventually reenable inter-
rupts.

12.7.1 Watermarks And Delayed Signals

Ttyoproc uses a technique called watermark processing to minimize overhead in the
interaction between upper and lower halves of the driver. The technique is worthy of
comment because it is both fundamental and popular.

To understand the motivation for watermark processing, suppose for a moment that
the lower-half called signal each time it removed a character from the buffer. Because
the processor may generate characters much faster than the lower-half output process can
display them (for example, if the priority of the lower-half process is lower than that of
the processes generating the output), the output buffer usually remains full with a process
waiting for the output semaphore. When ttyoproc removes a character, it signals the
semaphore, causing the first waiting process to deposit a character and continue process-
ing. Because programs often write more than one character at a time, the process that
was waiting has a high probability of producing another character quickly and ending up
waiting for the semaphore again. The problem is that rescheduling is relatively expen-
sive; executing it on every output character deprives other ready processes of CPU time.

To lower the rescheduling overhead, ttyoproc runs in two modes. It continues pro-
cessing normally until it finds the buffer filled beyond the high watermark; at which time,
it switches to delayed mode and stops signaling the output semaphore. While in delayed
mode, it accumulates the count of times it should have called signal. Finally, when the
buffer has drained to the low watermark, ttyoproc calls signal to make up for the signals
it has skipped. Delaying when the buffer is nearly full introduces hysteresis, because it
does not reschedule until some minimum number of buffer positions are available. Thus,
the process that was generating output can run for a while before the buffer fills and the
upper-half forces rescheduling.

In the code, constant OBMINSP determines the high and low watermarks. When
less than OBMINSP space remains in the output buffer, ttyoproc switches to delayed
mode and delays exactly OBMINSP times before switching back to normal mode.

12.7.2 Lower-Half Input Processing

Input processing is the most complex part of the tty device driver because it includes
code for character echo and line editing. The input routine operates in one of three
modes: raw, cbreak, and cooked, as specified by the imode field in the tty control block.
Raw mode, the simplest of the three, accumulates characters in the input buffer ibuff
without further processing. At the opposite extreme, cooked mode does character echo;
honors suspend or restart output; and accumulates complete lines before giving them to



-- --

206 An Example Device Driver Chap. 12

the upper-half routines. Cooked mode is the usual mode in which computer systems
operate − it honors special characters that permit the typist to edit input by erasing the
previous character or killing the entire line. Cbreak mode, something in between, honors
all control characters except those related to line editing; like raw mode, it delivers char-
acters to the upper-half routines without waiting for a complete line.

/* ttyiproc.c - ttyiproc, erase1, eputc, echoch */

#include <conf.h>

#include <kernel.h>

#include <tty.h>

#include <io.h>

#include <bios.h>

#include <butler.h>

#include <kbdio.h>

/*------------------------------------------------------------------------

* ttyiproc -- lower-half tty device process for input characters

*------------------------------------------------------------------------

*/

PROCESS ttyiproc()

{
register struct tty *iptr; /* pointer to tty block */

register int ch;

int ct,w;

int ps;

disable(ps);

for ( ;; ) {
if ( (ch=kbdgetc()) == NOCH ) {

receive();

continue;

}
if ( ch >= SPECKEY ) {

if ( ch == CFKEY+PSNAPK ) { /* process snapshot */

send(butlerpid,MSGPSNAP);

continue;

}
if ( ch == CFKEY+TSNAPK ) { /* tty snapshot */

send(butlerpid,MSGTSNAP);

continue;

}
if ( ch == CFKEY+DSNAPK ) { /* disk snapshot */

send(butlerpid,MSGDSNAP);



-- --

Sec. 12.7 Lower-Half Tty Driver Routines 207

continue;

}
if ( ch >= FKEY && ch < FKEY+10 ) { /* window? */

/* F10 maps to minor device 0 */

if ( (w=ch-FKEY+1) == 10 )

w = 0;

if ( w < Ntty ) {
iptr = &tty[w];

if ( iptr->wstate > 0 ) {
winofcur = w;

send(iptr->oprocnum,

TMSGOK);

}
}
continue;

}
}
iptr = &tty[winofcur]; /* get pointer to tty entry */

if (iptr->imode == IMRAW) {
if ( iptr->icnt >= IBUFLEN )

continue;

iptr->ibuff[iptr->ihead++] = ch;

++iptr->icnt;

if (iptr->ihead >= IBUFLEN)

iptr->ihead = 0;

signal(iptr->isem);

continue;

}
/* cbreak | cooked mode */

if ( ch == RETURN && iptr->icrlf )

ch = NEWLINE;

if (iptr->oflow) {
if (ch == iptr->ostart) {

iptr->oheld = FALSE;

send(iptr->oprocnum,TMSGOK);

continue;

}
if (ch == iptr->ostop) {

iptr->oheld = TRUE;

continue;

}
}
iptr->oheld = FALSE;

if (iptr->imode == IMCBREAK) { /* cbreak mode */



-- --

208 An Example Device Driver Chap. 12

if ( iptr->icnt >= IBUFLEN ) {
if (iptr->iecho)

eputc(iptr->ifullc,iptr);

continue;

}
iptr->ibuff[iptr->ihead++] = ch;

++iptr->icnt;

if (iptr->ihead >= IBUFLEN)

iptr->ihead = 0;

echoch(ch,iptr);

signal(iptr->isem);

continue;

}
/* cooked mode */

if (ch == iptr->ikillc && iptr->ikill) {
iptr->ihead -= iptr->icursor;

iptr->icnt -= iptr->icursor;

if ( iptr->ihead < 0 )

iptr->ihead += IBUFLEN;

iptr->icursor = 0;

if (iptr->iecho)

eputc(NEWLINE,iptr);

continue;

}
if (ch == iptr->ierasec && iptr->ierase) {

if (iptr->icursor > 0) {
--iptr->icursor;

if ( --(iptr->ihead) < 0 )

iptr->ihead += IBUFLEN;

--iptr->icnt;

erase1(iptr);

}
continue;

}
if ((ch==NEWLINE | | ch==RETURN) && iptr->icnt < IBUFLEN) {

echoch(ch,iptr);

iptr->ibuff[iptr->ihead++] = ch;

++iptr->icnt;

if (iptr->ihead >= IBUFLEN)

iptr->ihead = 0;

ct = iptr->icursor+1; /* +1 for \n or \r*/

iptr->icursor = 0;

signaln(iptr->isem,ct);

continue;



-- --

Sec. 12.7 Lower-Half Tty Driver Routines 209

}
if ( iptr->icnt >= IBUFLEN-1) {

if (iptr->iecho)

eputc(iptr->ifullc,iptr);

continue;

}
echoch(ch,iptr);

iptr->icursor++;

iptr->ibuff[iptr->ihead++] = ch;

++iptr->icnt;

if (iptr->ihead >= IBUFLEN)

iptr->ihead = 0;

} /* end of forever loop */

}

/*------------------------------------------------------------------------

* erase1 -- erase one character honoring erasing backspace

*------------------------------------------------------------------------

*/

LOCAL erase1(iptr)

struct tty *iptr;

{
char ch;

if ( iptr->iecho == 0 )

return;

ch = iptr->ibuff[iptr->ihead];

if ( (ch<BLANK | | ch==0177) && iptr->evis ) {
eputc(BACKSP,iptr);

if (iptr->ieback) {
eputc(BLANK,iptr);

eputc(BACKSP,iptr);

}
}
eputc(BACKSP,iptr);

if (iptr->ieback) {
eputc(BLANK,iptr);

eputc(BACKSP,iptr);

}
}

/*------------------------------------------------------------------------

* echoch -- echo a character with visual option

*------------------------------------------------------------------------



-- --

210 An Example Device Driver Chap. 12

*/

LOCAL echoch(ch, iptr)

char ch; /* character to echo */

struct tty *iptr; /* ptr to I/O block */

{
if ( iptr->iecho == 0 )

return; /* nothing to do */

if ( ch==NEWLINE | | ch==RETURN | | ch==TAB | | ch==BELL ) {
eputc(ch,iptr);

return;

}
if ( (ch<BLANK | | ch==0177) && iptr->evis ) {

eputc(UPARROW,iptr);

eputc(ch+0100,iptr); /* make it printable */

return;

}
eputc(ch,iptr);

}

/*------------------------------------------------------------------------

* eputc -- put one character in the echo queue

*------------------------------------------------------------------------

*/

LOCAL eputc(ch,iptr)

char ch;

struct tty *iptr;

{
if ( iptr->ecnt < EBUFLEN ) {

iptr->ebuff[iptr->ehead++] = ch;

++iptr->ecnt;

if (iptr->ehead >= EBUFLEN)

iptr->ehead = 0;

send(iptr->oprocnum,TMSGOK);

return;

}
sendf(iptr->oprocnum,TMSGEFUL); /* wake it up!!! */

}

Note that ttyiproc is structured as an infinite loop, with interrupts disabled, similar to
ttyoproc. Ttyiproc first checks to see if there are characters available from the keyboard
by calling the low-level kbdgetc. If no characters are available, the routine calls receive,
waiting for a message that a character has arrived. This message comes from the key-
board interrupt handler ttyiin.



-- --

Sec. 12.7 Lower-Half Tty Driver Routines 211

Certain special keys are trapped before normal input processing. A special key is
identified by a key code greater than or equal to SPECKEY, which is defined to be 0x100
in tty.h. Among the special keys are the various combinations of PC function keys.
Three special keys, which receive treatment here, send messages to the butler process,
which is responsible for displaying certain information about the state of PC-Xinu. One
key displays a snapshot of all active processes, another displays the current status of tty
queues, and a third displays the current status of disk requests.

Ordinary function keys control the location of the cursor in one of the active screen
windows. The purpose of these keys will be described in Chapter 14. In particular, input
from the keyboard will appear in the window selected by these keys. The window
number is stored in the global variable winofcur, which is used as an index into the tty ar-
ray. When there are no windows active, the CONSOLE device is considered the current
window, represented by a zero value for winofcur.

Raw mode is the simplest to implement and accounts for only a dozen lines of code
as shown in file ttyiproc.c. In raw mode, ttyiproc deposits the input character in the input
buffer and signals the input semaphore isem. If no space remains in the buffer, ttyiproc
throws the character away.

12.7.3 Cooked Mode And Cbreak Mode Processing

Cooked and cbreak mode share code that maps RETURN to NEWLINE and handles
output flow control. Field oflow of the tty control block determines whether the driver
honors flow control at all. If it does, the driver suspends output by setting oheld when it
receives character ostop and restarts output when it receives any other character. Charac-
ters ostart and ostop are considered ‘‘control’’ characters, so the driver does not place
them in the buffer for the upper-half to receive.

Cbreak mode performs character echo and reports buffer overflow. It sends ifullc if
the input buffer ibuff cannot hold more characters. Normally, ifullc is a ‘‘bell’’ that
causes the terminal to sound an audible alarm; thus, a person who is typing characters be-
fore they have been read by the computer will hear the alarm and stop typing until char-
acters have been read. Cbreak calls local routines eputc to place ifullc in the echo buffer,
and echoch to echo the character that has been received.

Cooked mode operates much like cbreak mode except that it also performs line edit-
ing. It accumulates lines in the input buffer, using variable icursor to keep a count of the
characters on the current line. When the erase character ierasec arrives, ttyiproc decre-
ments icursor by one and backs up over the previous character. When the line kill char-
acter ikillc arrives, ttyiproc backs over all characters on the current line by decrementing
icursor to zero. In either case, it calls procedure erase1 to obliterate the characters from
the display. Finally, when a NEWLINE or RETURN character arrives, ttyiproc makes the
line available to the upper-half routines by signaling the input semaphore icursor times.
Procedures echoch and erase1 inspect the iecho flag to determine if characters are to be
echoed. These routines are simple but deserve careful study.



-- --

212 An Example Device Driver Chap. 12

12.8 Keyboard Interrupt Handling

Keyboard interrupt handling is exceptionally simple after having done all the
remaining work in the ttyiproc routine. The interrupt dispatcher calls ttyiin upon receipt
of a keyboard interrupt. It is only necessary for ttyiin to send a message to the ttyiproc
process to wake it up if it is waiting for a message. Initialization puts the process id of
ttyiproc in the wstat field of the tty[0] structure.

/* ttyiin.c - ttyiin */

#include <conf.h>

#include <kernel.h>

#include <tty.h>

/*------------------------------------------------------------------------

* ttyiin -- lower-half tty device driver for input interrupts

*------------------------------------------------------------------------

*/

INTPROC ttyiin()

{
send(tty[0].wstate,TMSGOK);

}

12.9 Tty Control Block Initialization

Procedure ttyinit, shown below, initializes the tty control block given a pointer to the
devtab entry for the device:

/* ttyinit.c - ttyinit */

#include <conf.h>

#include <kernel.h>

#include <tty.h>

#include <io.h>

#include <bios.h>

#include <kbdio.h>

/*------------------------------------------------------------------------

* ttyinit -- initialize buffers and modes for a tty line

*------------------------------------------------------------------------

*/

ttyinit(devptr)



-- --

Sec. 12.9 Tty Control Block Initialization 213

struct devsw *devptr;

{
register struct tty *iptr;

char *cp;

int pid;

int ttyoproc();

int ttyiproc();

iptr = &tty[devptr->dvminor];

devptr->dvioblk = (char *) iptr; /* fill tty control blk */

iptr->ihead = iptr->itail = 0; /* empty input queue */

iptr->isem = screate(0); /* chars. read so far=0 */

iptr->icnt = 0;

iptr->osem = screate(OBUFLEN); /* buffer available=all */

iptr->odsend = 0; /* sends delayed so far */

iptr->ohead = iptr->otail = 0; /* output queue empty */

iptr->ocnt = 0;

iptr->ehead = iptr->etail = 0; /* echo queue empty */

iptr->ecnt = 0;

iptr->imode = IMCOOKED;

iptr->iecho = iptr->evis = TRUE; /* echo console input */

iptr->ierase = iptr->ieback = TRUE;/* console honors erase */

iptr->ierasec = BACKSP; /* using ˆh */

iptr->ecrlf = iptr->icrlf = TRUE; /* map RETURN on input */

iptr->ocrlf = iptr->oflow = TRUE;

iptr->ikill = TRUE; /* set line kill == @ */

iptr->ikillc = ATSIGN;

iptr->oheld = FALSE;

iptr->ostart = STRTCH;

iptr->ostop = STOPCH;

iptr->icursor = 0;

iptr->ifullc = TFULLC;

iptr->curcur.row = 0;

iptr->curcur.col = 0;

/* now set up new tty process for this device */

pid = create(ttyoproc,INITSTK,TTYOPRIO,"*TTYO*",0);

if ( pid == SYSERR )

kprintf("Can’t create console output process\n");

else

ready(pid);

iptr->oprocnum = pid;

pid = create(ttyiproc,INITSTK,TTYIPRIO,"*TTYI*",0);



-- --

214 An Example Device Driver Chap. 12

if ( pid == SYSERR )

kprintf("Can’t create console input process\n");

else

ready(pid);

iptr->wstate = pid;

}

Ttyinit initializes the control block for the default cooked mode. Ttyinit creates the input
and output semaphores and resets the buffer count and head and tail pointers. Finally, it
creates the ttyoproc and ttyiproc processes and puts their process ids in the oprocnum and
wstat fields.

The chosen tty control block parameters work best for the PC which can backspace
over characters on the display and erase them. In particular, the parameter ieback causes
the driver to echo three characters, backspace-space-backspace, when it receives the
erase character, ierasec. On the PC screen this gives the effect of erasing characters as
the user backs over them. If you look again at procedure ttyiproc, you will see that it
carefully backs up the correct number of spaces, even if the user erases a control charac-
ter that is displayed as two printable characters.

12.10 Device Driver Control

So far, we have discussed the upper-half data transfer operations like read and
write. Another operation, control, provides a way for user programs to control devices
and device drivers. For example, the file ttycntl.c contains a sample set of control func-
tions for the tty device driver:

/* ttycntl.c - ttycntl */

#include <conf.h>

#include <kernel.h>

#include <tty.h>

#include <io.h>

/*------------------------------------------------------------------------

* ttycntl -- control a tty device by setting modes

*------------------------------------------------------------------------

*/

SYSCALL ttycntl(devptr, func)

struct devsw *devptr;

int func;

{
register struct tty *ttyp;



-- --

Sec. 12.10 Device Driver Control 215

int ps;

int c;

disable(ps);

ttyp = &tty[devptr->dvminor];

c = OK; /* assume the best */

switch ( func ) {
case TCNEXTC:

wait(ttyp->isem);

c = ttyp->ibuff[ttyp->itail];

signal(ttyp->isem);

break;

case TCMODER:

ttyp->imode = IMRAW;

break;

case TCMODEC:

ttyp->imode = IMCOOKED;

break;

case TCMODEK:

ttyp->imode = IMCBREAK;

break;

case TCECHO:

ttyp->iecho = TRUE;

break;

case TCNOECHO:

ttyp->iecho = FALSE;

break;

case TCICHARS:

c = scount(ttyp->isem);

break;

default:

c = SYSERR;

}
restore(ps);

return(c);

}

Some tty control functions change parameters in the tty control block. For example,
function codes TCMODER and TCMODEC switch between raw and cooked modes;
TCECHO and TCECHONO control character echo. Other functions like TCICHARS al-
low the user to query the driver, in this case, to find how many characters are waiting in
the input queue.



-- --

216 An Example Device Driver Chap. 12

Observant readers may have noticed that parameter addr is not used by procedure
ttycntl. It has been declared, however, because the device-independent I/O routine con-
trol always provides three arguments when calling ttycntl. Omitting the argument de-
claration would make the code less portable and more difficult to understand.

12.11 Summary

A device driver consists of a set of procedures that control peripheral hardware dev-
ices. The driver routines are partitioned into two halves: an upper-half that contains the
routines called from user programs and a lower-half that contains routines that handle
device-specific activities. The two halves communicate through a shared data structure
called the device control block.

The example device driver examined in this chapter is referred to as a tty driver. It
manages output to the PC display screen and input from the PC keyboard. The tty driver
upper-half contains routines that implement read, write, getc, putc, and control opera-
tions; a user calls them indirectly with the device-independent I/O procedures. The
lower-half output process executes an infinite loop, displaying characters from the output
queue. When an input character arrives, the lower-half keyboard interrupt handler awak-
ens the input process which deposits the character in the queue of incoming characters,
where it can be retrieved by the upper-half. The driver also contains an initialization pro-
cedure that fills in the device control block and creates the input and output processes
when the system starts.

FOR FURTHER STUDY

Device drivers are seldom described in detail because they depend on the hardware
and higher-levels of the operating system. A general discussion of device management
can be found in Freeman [1975], Calingaert [1982], and Habermann [1976]. Watson
[1970] focuses on drivers for terminal devices.

The basic style of the terminal interface used here, as well as the name ‘‘tty,’’ have
been taken from the UNIX system (Ritchie and Thompson [1974]).

EXERCISES

12.1 Predict what would happen if two processes executed ttyread concurrently when both re-
quested a large number of characters. Experiment and see what happens.

12.2 Making the input and output buffers arrays simplifies programming but may introduce ad-
ditional overhead at run-time. Rewrite the tty driver routines to use pointers instead of ar-
ray subscripts. Can you measure a change in performance?



-- --

Exercises 217

12.3 The lower-half tty output process stops signaling the output semaphore when less than
OBMINSP remains. Can the buffer ever be filled completely?

12.4 Explain how more than OBMINSP positions can be free in the output buffer immediately
after ttyoproc switches back to normal mode from delayed mode. What is the maximum
number of free positions? The minimum?

12.5 Suppose ttyoproc switched to delayed mode when the buffer was full and switched back to
normal mode when it contained less than OBMINSP. Would the change result in more or
fewer reschedules?

12.6 Multi-level drivers are often needed on systems that have more than one type of output
devices, including asynchronous serial line devices, all of which connect to terminals that
should act identically. Explore the code for a system that uses heterogeneous serial line
hardware. Identify the low-level and middle-level drivers.

12.7 A user observes that his process, which uses ttywrite, writes a different sequence of char-
acters when run on a system with a low output baud rate than when run on a system with a
high output baud rate. The problem occurs at high baud rates when other processes call
ttywrite concurrently. Can you explain the problem?

12.8 Rewrite ttywrite to correct the error referred to in the previous question.

12.9 Ttycntl handles changes of mode poorly because it does not reset the cursor or buffer
pointers. Rewrite the code to improve it. What happens to partially entered lines when
changing from cooked to raw mode?

12.10 Consider the following deadlock: processes are waiting for space in the output buffer;
ttyoproc is in delayed mode so, although space remains, it has not signaled the output
semaphore; and device output interrupts are disabled so the driver will not awaken to sig-
nal the output semaphore. If the processes waiting for buffer space could execute, they
would restart interrupts. If the device interrupts were enabled, they would start output and
signal the semaphore. Can this occur?

12.11 When connecting two computers, it is useful to have flow control in both directions.
Modify the tty driver to include ‘‘tandem’’ flow control.

12.12 One design alternative to speed up the ttyread routine would be to assign the integer value
iptr->icnt to avail instead of calling scount to assign it the count of semaphore iptr->isem
to avail. Show that with this change it is possible for the input buffer to be corrupted.
What is the exact relationship between iptr->icnt and the count of iptr->isem?

12.13 Ttyinit sets the priority of the keyboard input process higher than that of the screen output
process. Explain this choice. Conduct an experiment to determine the effect of changing
the keyboard input process priority to a value lower than the screen output process.

12.14 The priority (TTYOPRIO) of the process ttyoproc is set by ttyinit to be higher than that of
an ordinary process (INITPRIO). What policy does this implement? Experiment with
changing the priority of ttyoproc to a value less than typical user processes.

12.15 Input characters from terminals often come in spurts: when one terminal input is idle,
another may be very busy. Some systems employ a pool of small input buffers shared
among all the tty devices. Input from any one of the terminals will be deposited in a
buffer allocated from the pool; several of these buffers may be linked together to contain a
stream of input characters for the particular terminal, and only those tty devices experienc-
ing activity will use the buffers. Buffers no longer in use are returned to the pool. Imple-
ment this input buffer scheme in PC-Xinu, and comment on its effectiveness.



-- --

218 An Example Device Driver Chap. 12

12.16 Conduct experiments to see whether watermark processing has an effect on system perfor-
mance.

12.17 Replace the process-driven keyboard input with direct interrupt-driven input from the PC
keyboard port.

12.18 Add support for the PC’s asynchronous communication lines, treating them as tty devices.


