
3

List and Queue
Manipulation

Linked list processing is fundamental in operating systems − it seems to pervade
every component. This chapter introduces the set of procedures that form the backbone
of linked list manipulation in the PC-Xinu process manager. The routines described here
are used to maintain queues ordered by time of insertion and queues ordered by priority.
They perform such actions as: inserting an item at the tail of a list, inserting an item in an
ordered list, removing an item at the head of a list, and allocating a new list.

The linked list routines in this chapter provide a good introduction to the program-
ming language C and to the programming conventions used throughout this book. Start-
ing with these routines is especially helpful because they deal with a familiar subject, and
because only one process executes them at a given time. Thus, the reader can think of
the code as being part of a sequential program − there is no need to worry about interfer-
ence from other processes executing concurrently.

3.1 Linked Lists Of Processes

The process manager deals with objects called processes, moving them to and from
various lists frequently. The items actually stored in these lists are small, nonnegative in-
tegers called process identifiers (or process ids); we will use the terms ‘‘process,’’ ‘‘pro-
cess identifier,’’ and ‘‘process id’’ interchangeably throughout this chapter. Constant
NPROC gives the range of process identifiers. If it helps, assume NPROC is 30 and the
items to be stored are integers between 0 and 29.

An early design called for many process lists, each with its own data structure.
Some of the lists were first-in-first-out (FIFO) queues, others were ordered by key.
Some were singly-linked, while others had to be doubly-linked. After the requirements

55

56 List and Queue Manipulation Chap. 3

were formulated, it became obvious that centralizing the linked-list processing into a
single data structure would eliminate many special cases in the code.
To accommodate all these cases, we have chosen a representation in which: all lists
are doubly-linked (each node points to its predecessor as well as its successor), each
node contains a key (even though key values are not used in FIFO lists), and each list
has both a head and tail. In essence, they all have the form shown in Figure 3.1.

Figure 3.1 A doubly-linked list containing 4 (key=25) and 2 (key=14).

The key field in the head node contains the minimum possible integer; the key field in
the tail contains the maximum possible integer. As expected, the successor of the tail
and the predecessor of the head are null. When a list is empty, the successor of the
head is the tail, and the predecessor of the tail is the head.
The diagram above is only a logical one. In practice, memory requirements have been
reduced by storing the data field implicitly. Such optimization is only possible
because of the following property:

A process appears on at most one list at any time.

To understand how data elements can be stored implicitly, look at Figure 3.2. It shows
an array called the Q structure, each entry of which has three fields: a key field, a next
field, and a previous field. Positions 0 through NPROC-1 correspond to the integer
process ids that are stored in the list; positions NPROC and higher are used for heads
and tails of lists. To place item i on a list, the node with index i is linked into the list.
It is only possible to reserve a node for each item because the range of values is small
(typically, NPROC=30), and no item ever appears on more than one list
simultaneously. A closer look at the code should make the operations clear.

-- --

Sec. 3.1 Linked Lists Of Processes 57

key next prev���
0 ���
1 ���
2 14 33 4���
3 ���
4 25 2 32���
5 ���

.

.

.���
NPROC-1	 	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
NPROC
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

.

.

.���
Head at 32 MININT 4 -1���

Tail at 33 MAXINT -1 2������������������������
.
.
.���

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 3.2 The list from Figure 3.1 stored in the q array.

3.2 Implementation Of The Q Structure

In C, the Q structure pictured above is q, an array of qent structures. File q.h con-
tains the declarations of both q and qent:

-- --

58 List and Queue Manipulation Chap. 3

/* q.h - firstid, firstkey, isempty, lastkey, nonempty */

/* q structure declarations, constants, and inline procedures */

#define NQENT NPROC + NSEM + NSEM + 4 /* for ready & sleep */

struct qent { /* one for each process plus two for */

/* each list */

int qkey; /* key on which the queue is ordered */

int qnext; /* pointer to next process or tail */

int qprev; /* pointer to previous process or head */

};

extern struct qent q[];

extern int nextqueue;

/* inline list manipulation procedures */

#define isempty(list) (q[(list)].qnext >= NPROC)

#define nonempty(list) (q[(list)].qnext < NPROC)

#define firstkey(list) (q[q[(list)].qnext].qkey)

#define lastkey(tail) (q[q[(tail)].qprev].qkey)

#define firstid(list) (q[(list)].qnext)

#define EMPTY -1 /* equivalent of null pointer */

Each q entry either corresponds to the head of a list, the tail of a list, or an item to be
placed on a list. For now, remember that items stored on lists are process id integers in
the range 0 to NPROC-1. The implicit assumption throughout the code is that q[0]
through q[NPROC-1] correspond to these process ids, while q[NPROC] through
q[NQENT-1] correspond to the heads or tails of lists.

Symbolic constant NQENT defines the number of entries in the q array; the value
‘‘NPROC+NSEM+NSEM+4’’ will allocate enough room in the q structure for NPROC
processes as well as head and tail pointers for NSEM semaphore queues, a ready list, and
a sleep list.

The contents of entries in the q array are defined by structure qent. (This file con-
tains only a declaration of the shape of elements in the q array; we will see the definition
of its contents in Chapter 13.) Field qnext points forward, qprev points backward, and
qkey contains an integer key for the node. When the forward and backward pointers do
not contain valid indexes, they are assigned EMPTY.

-- --

Sec. 3.2 Implementation Of The Q Structure 59

3.2.1 In-Line Q Functions

The functions isempty and nonempty are predicates (Boolean functions) that test
whether a list is empty or not, given the index of its head as an argument. Isempty deter-
mines whether a list is empty by checking to see if the first node on the list is a process or
the list tail; nonempty makes the opposite test. Remember that an item is a process if and
only if its index is less than NPROC.

The other in-line functions should also be easy to understand. Functions firstkey,
lastkey, and firstid return the key of the first process on a list, the key of the last process
on a list, or the q index of the first process on a list. Usually, these functions are applied
to nonempty lists, but they do not abort even if the list is empty because qkey is always
initialized.

3.2.2 FIFO Queue Manipulation

To produce a FIFO queue, items are inserted at the tail of a list and removed at the
head of a list. Procedures enqueue and dequeue, found in file queue.c, perform the FIFO
operations in PC-Xinu. The code is straight-forward, once you understand how pointers
operate. Variables tptr and mptr are pointers to qent structures. The first two executable
statements in enqueue assign these pointers the addresses of the q entries corresponding
to the tail of the list and the process to be inserted. Once the address of an element has
been recorded, individual fields of the structure are referenced using the ‘‘−>’’ operator.
The point of recording addresses in pointers is efficiency − it avoids recomputing array
subscripts again and again.

-- --

60 List and Queue Manipulation Chap. 3

/* queue.c - dequeue, enqueue */

#include <conf.h>

#include <kernel.h>

#include <q.h>

/*--

* enqueue -- insert an item at the tail of a list

*--

*/

int enqueue(item, tail)

int item; /* item to enqueue on a list */

int tail; /* index in q of list tail */

{
struct qent *tptr; /* points to tail entry */

struct qent *mptr; /* points to item entry */

tptr = &q[tail];

mptr = &q[item];

mptr->qnext = tail;

mptr->qprev = tptr->qprev;

q[tptr->qprev].qnext = item;

tptr->qprev = item;

return(item);

}

/*--

* dequeue -- remove an item from a list and return it

*--

*/

int dequeue(item)

int item;

{
struct qent *mptr; /* pointer to q entry for item */

mptr = &q[item];

q[mptr->qprev].qnext = mptr->qnext;

q[mptr->qnext].qprev = mptr->qprev;

return(item);

}

File queue.c includes three other files: conf.h, kernel.h, and q.h. File q.h is needed be-
cause procedures enqueue and dequeue both reference the q structure. But why are the

-- --

Sec. 3.2 Implementation Of The Q Structure 61

other two included? It turns out that neither are needed by the code contained explicitly
in queue.c. However, queue.c includes file q.h which references constants like NPROC
and NSEM that are defined in kernel.h and conf.h. As a general rule, so many important
constants have been collected into these two files that most system routines must include
them. We will simply include them for now and postpone looking at them until later.

3.3 Priority Queue Manipulation

The process manager often needs to select from a set of processes one with the
highest priority, so the linked list routines must be able to maintain sets of processes that
have an associated priority. (Priorities in PC-Xinu are easy to understand: for now,
think of them as integer values assigned to the processes.) In general, the task of select-
ing a process with highest priority is performed frequently compared with the tasks of in-
serting processes in the set and deleting them, so the idea is to design a data structure that
makes selection efficient compared to insertion.

A variety of data structures have been devised to store sets when selection by priori-
ty is important. Such data structures are called priority queues. Although not all ‘‘priori-
ty queues’’ use a queue, the term accurately describes the PC-Xinu implementation −
Xinu priority queues are merely linked lists in which processes are ordered by their prior-
ity. The highest priority process can always be found at the tail of the list. Of course,
insertion in a priority queue is more expensive than insertion in a FIFO queue because
the list must be searched to determine where the new item should be located.

When many items appear in a priority queue, or if the number of insertions is high
compared to the number of times items are extracted by priority, using linear lists for
priority queues would not be efficient (the exercises discuss this point further). However,
in a small system like PC-Xinu, where we expect 2 or 3 elements to be on a given priori-
ty queue at any time, simple lists suffice.

The procedures that maintain ordered lists are straightforward. Insert, shown below,
takes as an argument a process id, an integer giving the head of a list in the q structure,
and a priority, and inserts the process into its correct position in the list. It uses the qkey
field of a process’ node to store that process’ priority. To find the correct location in the
list, insert searches for an existing element with a key greater than or equal to the key of
the element being inserted. During the search, integer next moves along the list. The
loop must eventually terminate because the key of the tail element contains the largest
possible integer. Once the correct location has been found, insert changes the necessary
pointers to link the new node into the list.

-- --

62 List and Queue Manipulation Chap. 3

/* insert.c - insert */

#include <conf.h>

#include <kernel.h>

#include <q.h>

/*--

* insert -- insert a process into a q list in key order

*--

*/

int insert(proc, head, key)

int proc; /* process to insert */

int head; /* q index of head of list */

int key; /* key to use for this process */

{
int next; /* runs through list */

int prev;

next = q[head].qnext;

while (q[next].qkey < key) /* tail has MAXINT as key */

next = q[next].qnext;

q[proc].qnext = next;

q[proc].qprev = prev = q[next].qprev;

q[proc].qkey = key;

q[prev].qnext = proc;

q[next].qprev = proc;

return(OK);

}

Elements can be extracted from a FIFO queue by removing them from the head;
they can be extracted from a priority queue at either the head or tail. Procedures getfirst
and getlast provide the operations of removing items from queues. Getfirst takes the list
head index as an argument, and getlast takes the list tail index as an argument. If the list
is a priority queue, getfirst removes an item with the smallest key and getlast removes an
item with the largest key. For FIFO queues, getfirst removes the oldest item in the list.
Both routines return the index of the item removed. These returned values are either pro-
cess ids or EMPTY.

/* getitem.c - getfirst, getlast */

#include <conf.h>

#include <kernel.h>

#include <q.h>

-- --

Sec. 3.3 Priority Queue Manipulation 63

/*--

* getfirst -- remove and return the first process on a list

*--

*/

int getfirst(head)

int head; /* q index of head of list */

{
int proc; /* first process on the list */

if ((proc=q[head].qnext) < NPROC)

return(dequeue(proc));

else

return(EMPTY);

}

/*--

* getlast -- remove and return the last process from a list

*--

*/

int getlast(tail)

int tail; /* q index of tail of list */

{
int proc; /* last process on the list */

if ((proc=q[tail].qprev) < NPROC)

return(dequeue(proc));

else

return(EMPTY);

}

3.4 List Initialization

The procedures described so far all assume that even though the lists may be empty,
their head and tail nodes have been initialized. We now consider how to create empty
lists in the first place. It is appropriate that this material occurs at the end of this chapter
because it brings up an important point about the design process:

Initialization is the final step in design.

This may sound strange because it is not possible to postpone thinking about initialization

-- --

64 List and Queue Manipulation Chap. 3

altogether, but the point is simple: design the data structures needed to keep the system
running first and then figure out how to initialize them. Partitioning the ‘‘steady state’’
part of the system from the ‘‘transient state’’ part helps avoid the temptation of sacrific-
ing good design for easy initialization.

Initialization of entries in the q structure is performed on demand as entries are
needed. Running programs call newqueue to create a new list. Newqueue allocates a
pair of adjacent positions in the q array to use as head and tail nodes; it initializes the list
to empty by pointing the successor of the head to the tail and the predecessor of the tail to
the head. Other pointers are assigned the value EMPTY. When it initializes the head and
tail, newqueue also sets the key fields to the smallest and largest possible integers,
respectively, so the head and tail can be used with an ordered list. Finally, newqueue re-
turns the index of the list head to its caller.

/* newqueue.c - newqueue */

#include <conf.h>

#include <kernel.h>

#include <q.h>

/*--

* newqueue -- initialize a new list in the q structure

*--

*/

int newqueue()

{
struct qent *hptr; /* address of new list head */

struct qent *tptr; /* address of new list tail */

int hindex, tindex; /* head and tail indexes */

hptr = &q[hindex=nextqueue++];/* nextqueue is global variable */

tptr = &q[tindex=nextqueue++];/* giving next used q pos. */

hptr->qnext = tindex;

hptr->qprev = EMPTY;

hptr->qkey = MININT;

tptr->qnext = EMPTY;

tptr->qprev = hindex;

tptr->qkey = MAXINT;

return(hindex);

}

-- --

Sec. 3.5 Summary 65

3.5 Summary

The code in this chapter described linked-list manipulation in the process manager.
Linked lists of processes are kept in a single data structure, the q array. Primitive opera-
tions for manipulating the lists of processes can produce FIFO queues or priority queues.
All lists have the same format: they are doubly-linked, each has both a head and tail, and
each node has an integer key field. Keys are used when the list is a priority queue; they
are ignored if the list is a FIFO queue.

FOR FURTHER STUDY

Knuth [1968] describes linked-list manipulation in detail. Good algorithms for
priority queues and related data structures can be found in Aho et. al. [1974]. Wirth
[1976] contains examples in Pascal. Habermann [1976] explains the use of a priority
queue in operating systems.

EXERCISES

3.1 Write test drivers to exercise the procedures introduced in this chapter. You will need to ini-
tialize the queue structure by setting nextqueue to NPROC and making NSEM+2 calls to
newqueue.

3.2 Duplicate the procedures in this chapter to work with singly-linked lists. How much storage
does the second set of routines require? How much CPU time do they save?

3.3 Implement procedures to manipulate lists using pointers instead of subscripts into an array of
structures. How much storage/time do they save? Comment on the complexity of routines
like isempty when implemented with pointers.

3.4 Does insert work correctly for all possible keys? If not, for which does it fail?

3.5 Larger systems sometimes use a data structure known as a heap to contain a priority queue.
What is a heap? Will its use be more or less expensive than an ordered, doubly-linked list
when the list size is between 1 and 3?

3.6 Finding the address of an item in an array may require multiplication. If the compiler you are
using converts multiplication by a power of 2 into a shift, try padding the size of a qent to a
power of 2 bytes. How much faster does it make the routines? Investigate the relative speed
of multiplication and shifting on the 8088.

3.7 Modify insert to use pointers instead of subscripting. Is it faster? Larger?

3.8 Rewrite all the list manipulation routines so they reference a list by a single integer, k, and as-
sume that q[k] is the list head and q[k+1] is the list tail. Are they faster or slower?

3.9 Modify newqueue to check for an error caused by allocating more than NQENT entries.

