
13

System Initialization

Initialization is the last step of the design process. Designers should create a system
by thinking about it in the executing state, postponing the details of how to get the system
started. Thinking about initialization early has the same bad effect as worrying about op-
timization early: it tends to impose unnecessary constraints on the design and divert the
designer’s attention from important issues to trivial ones.

If initialization is the last step of design, why should this chapter take it up? We
have chosen to introduce it here to show how the pieces discussed so far fit together be-
fore the reader loses sight of the fundamental system components. The most important
thing to realize is that many microcomputer applications require no more than what we
have at hand − a process manager to support concurrent computation, and the means to
transmit information to and from running programs. In fact, several applications have
been built on top of the ‘‘minimal’’ system we have already put together; the rest is just
icing on the (layered) cake. So, it makes sense to take a look at how one might start such
a system running. It also makes sense to consider initialization now because subsequent
chapters describe pieces of the system that are more or less optional; this chapter will
help explain why they can be included or ignored without affecting the lower-layer
software. The discussion of initialization begins with a consideration of system termina-
tion.

13.1 Starting From Scratch

Everyone who has worked with a computer system knows that errant programs or
malfunctions in the hardware lead to catastrophic failures, popularly called crashes. A
crash occurs when the hardware attempts an invalid operation, caused because code or
data in the operating system has been destroyed. Users also know that a crash means the
contents of memory have been corrupted or lost, and that it will take considerable time
(and perhaps a wizard) to restart the operating system. But users often do not understand
or appreciate the restart mechanisms.

219

-- --

220 System Initialization Chap. 13

How can a machine, devoid of programs, spring into action and begin executing
again? It cannot. Somehow a program must be deposited in memory before the machine
can start. On the oldest machines, restarting was a painful process because a human
operator entered the initial program through switches on the front panel. (Some micro-
computer systems still use this method.) Switches were replaced by standard keyboards
and later by special terminals that could feed in restart programs from paper tape. Now,
large machines have attached micro- or mini-computer systems that load the initial pro-
gram from tape or disk storage attached to the micro. (The microcomputer itself often
has its initial program in Read-Only Memory, so it can restart without help from another
machine.)

Using switches, keyboards, paper tape, or a microcomputer to load memory is a
slow and tedious process; these techniques are only used to load the smallest possible
startup program. Once a program has been loaded, the main CPU can execute the startup
program which reads a larger program, usually from a specific location on a specific disk
storage device. The CPU then branches to the larger program which reads the entire
operating system into memory and branches to its beginning. Programs in the sequence
that load ever larger programs are often called bootstraps, and the entire process is called
rebooting the system. The terminology comes from the phrase, ‘‘pulling one’s self up by
one’s bootstraps,’’ a seemingly impossible task. Other names for the process are Initial
Program Load (IPL) and cold start.

The work of initialization does not end when the CPU begins executing operating
system code. The system must initialize devices and system data structures like the
semaphore table. It must also check for, and repair, damage to the linked lists and disk
pointers in the file system. Most importantly, it must undergo metamorphosis, changing
itself from a single program into an operating system capable of running multiple
processes concurrently.

After a brief sketch of how PC-Xinu gets started, this chapter concentrates on ex-
plaining exactly what happens after the system begins execution. The main goal is to ex-
plain the steps necessary to transform the single, sequential program into an operating
system that can support concurrent execution.

13.2 Booting PC-Xinu

The PC provides a development environment (editors, an assembler, a C compiler, a
linker, and other tools) for creating and modifying the PC-Xinu source code. Compiling
and assembling the source code and user program modules into object and library
modules, and linking the modules together results in an executable program. This pro-
gram is executed just like any other PC program. But once it begins, the entire interac-
tion between PC-Xinu and the system hardware components is through the BIOS.

Before PC-Xinu may be started, the host operating system MS-DOS must be booted
following the steps described in the previous section. In the case of the PC, the ROM
BIOS contains bootstrap code which is executed when the system is turned on or when
the Ctrl-Alt-Del keys are pressed. (Note in the latter case that the BIOS keyboard ISR

-- --

Sec. 13.2 Booting PC-Xinu 221

must be active and interrupts enabled for the keys to be recognized.) The BIOS bootstrap
code initializes hardware devices, checks system integrity and memory size, and reads
into RAM memory another small bootstrap program from disk. This second bootstrap
program reads in the remaining parts of MS-DOS and executes its startup code. PC-Xinu
begins life as a program executed from within MS-DOS. In a sense, booting PC-Xinu
‘‘from scratch’’ involves the following steps:

BIOS bootstrap −> disk bootstrap −> MS-DOS −> PC-Xinu

13.3 System Startup

When PC-Xinu first begins, the CPU starts executing C run-time initialization code
linked from the standard C library. Basically, it must establish a valid stack, process
command-line parameters, and determine the size of available memory. A single pro-
gram, not an operating system, is running when the CPU calls the C procedure main and
begins executing it. It is this program that initializes important data structures, devices,
semaphores and processes. The code is found in the file initiali.c: If there is drama in
the system, it lies here, where the transformation from program to system takes place.

-- --

222 System Initialization Chap. 13

/* initialize.c - main, sysinit */

#include <dos.h>

#include <conf.h>

#include <kernel.h>

#include <io.h>

#include <proc.h>

#include <sem.h>

#include <mem.h>

#include <q.h>

#include <mark.h>

#include <butler.h>

#include <bios.h>

#include <kbdio.h>

#ifdef Ntty

#include <tty.h>

int winofcur; /* define the current input window */

struct tty tty[Ntty]; /* window buffers and mode control */

#endif

#ifdef Ndsk

#include <disk.h>

#endif

#ifdef Nmf

#include <mffile.h>

struct mfblk mftab[Nmf];

#endif

/* Declarations of major kernel variables */

struct pentry proctab[NPROC]; /* process table */

int nextproc; /* next process slot to use in create */

struct sentry semaph[NSEM]; /* semaphore table */

int nextsem; /* next semaphore slot to use in screate*/

struct qent q[NQENT]; /* q table (see queue.c) */

int nextqueue; /* next slot in q structure to use */

struct mblock memlist; /* list of free memory blocks */

char *end; /* beginning of free memory */

char *maxaddr; /* end of free memory */

/* PC-specific variables */

-- --

Sec. 13.3 System Startup 223

int nmaps; /* no. of active intmap entries */

/* active system status */

int numproc; /* number of live user processes */

int currpid; /* id of currently running process */

/* real-time clock variables and sleeping process queue pointers */

long tod; /* time-of-day (tics since startup) */

int defclk; /* non-zero, then deferring clock count */

int clkdiff; /* deferred clock ticks */

int slnempty; /* FALSE if the sleep queue is empty */

int *sltop; /* address of key part of top entry in */

/* the sleep queue if slnonempty==TRUE */

int clockq; /* head of queue of sleeping processes */

int preempt; /* preemption counter. Current process */

/* is preempted when it reaches zero; */

/* set in resched; counts in ticks */

/* miscellaneous system variables */

int butlerpid; /* pid of butler process */

int rdyhead,rdytail; /* head/tail of ready list (q indexes) */

#define NULLNM "**NULL**" /* null process name */

/**/

/*** NOTE: ***/

/*** ***/

/*** This is where the system begins after the C environment has ***/

/*** been established. Interrupts are initially DISABLED, and ***/

/*** must eventually be enabled explicitly. This routine turns ***/

/*** itself into the null process after initialization. Because ***/

/*** the null process must always remain ready to run, it cannot ***/

/*** execute code that might cause it to be suspended, wait for a ***/

/*** semaphore, or put to sleep, or exit. In particular, it must ***/

/*** not do I/O unless it uses kprintf for console output. ***/

/*** ***/

/**/

/*--

* main -- initialize system and become the null process (id==0)

-- --

224 System Initialization Chap. 13

*--

*/

main(argc,argv) /* babysit CPU when no one home */

int argc;

char *argv[];

{
int xmain(); /* user’s main procedure */

int butler(); /* BUTLER process */

int ps; /* save processor flags */

int pcx; /* reschedule flag */

while (kbdgetc() != NOCH) /* eat remaining kbd chars */

;

kprintf("Initializing . . .\n");

xdisable(pcx);

disable(ps);

if (sysinit() == SYSERR) { /* initialize all of PC-Xinu */

kprintf("PC-Xinu initialization error\n");

maprestore();

restore(ps);

exit(1);

}
restore(ps);

kprintf("\nPC-Xinu Version %s\n", VERSION);

kprintf("%u real mem\n",(word)maxaddr);

kprintf("%u base addr\n",(word)end);

kprintf("%u avail mem\n", maxaddr-end);

kprintf("\nHit any key to continue . . . ");

kgetc(0); /* wait for keyboard input */

scrollup(0,0x184f,0,7); /* clear the screen */

putcsrpos(0,0); /* home the cursor */

xrestore(pcx);

/* start the butler process */

resume(butlerpid=create(butler,BTLRSTK,BTLRPRIO,BTLRNAME,0));

/* start up the user process */

resume(create(xmain,INITSTK,INITPRIO,"xmain",2,argc,argv));

while (TRUE) /* run forever without actually */

pause(); /* executing instructions */

}

/*--

-- --

Sec. 13.3 System Startup 225

* sysinit -- initialize all PC-Xinu data structures and devices

*--

*/

LOCAL sysinit()

{
int i,j;

struct pentry *pptr;

struct sentry *sptr;

struct mblock *mptr;

char *malloc(); /* C memory allocator */

char *realloc();

#ifndef TURBOC

char *sys_stknpb();

#endif

int xdone(); /* terminate xinu */

word sizmem; /* memory sizing */

char *namep; /* null process name pointer */

struct devsw *dvptr; /* pointer to devtab entry */

nmaps=0; /* no. of active intmap entries */

numproc = 0; /* initialize system variables */

nextproc = NPROC-1;

nextsem = NSEM-1;

nextqueue = NPROC; /* q[0..NPROC-1] are processes */

#ifdef TURBOC

sizmem = coreleft() - MDOS;

if ((end=malloc(sizmem)) == NULL)

return(SYSERR);

#else

for (sizmem = MMAX;

sizmem >= MMIN && (end=malloc(sizmem)) == NULL;

sizmem -= MBLK)

;

if (sizmem < MMIN)

return(SYSERR);

sizmem -= MDOS; /* save some for MSDOS */

if ((end=realloc(end,sizmem)) == NULL)

return(SYSERR);

#endif

maxaddr = end+sizmem; /* top of free memory */

end = (char *) roundew((word)end);

maxaddr = (char *) truncew((word)maxaddr);

-- --

226 System Initialization Chap. 13

memlist.mnext = mptr = /* initialize free memory list */

(struct mblock *) end;

mptr->mnext = (struct mblock *) NULL;

mptr->mlen = maxaddr-end;

for (i=0 ; i<NPROC ; i++) /* initialize process table */

proctab[i].pstate = PRFREE;

pptr = &proctab[NULLPROC]; /* initialize null process entry*/

pptr->pstate = PRCURR;

pptr->pprio = 0;

#ifdef TURBOC

pptr->pbase = maxaddr; /* null process pbase stack ptr */

#else

pptr->pbase = sys_stknpb(); /* null process pbase stack ptr */

#endif

namep=NULLNM;

for (j=0; j<PNMLEN; j++)

pptr->pname[j] = (*namep ? *namep++ : ’ ’);

pptr->pname[PNMLEN] = ’\0’;

pptr->paddr = main;

pptr->pargs = 0;

currpid = NULLPROC;

#ifndef TURBOC

sys_stkinit(); /* initialize run-time stacks */

#endif

for (i=0 ; i<NSEM ; i++) { /* initialize semaphores */

(sptr = &semaph[i])->sstate = SFREE;

sptr->sqtail = 1 + (sptr->sqhead = newqueue());

}

rdytail = 1 + (rdyhead=newqueue()); /* initialize ready list */

#ifdef MEMMARK

_mkinit(); /* initialize memory marking */

#else

pinit(); /* initialize ports */

poolinit(); /* initialize the buffer pools */

#endif

clkinit(); /* initialize real-time clock */

#ifdef Ndsk

dskdbp= mkpool(DBUFSIZ, NDBUFF); /* initialize disk buffers */

-- --

Sec. 13.3 System Startup 227

dskrbp= mkpool(DREQSIZ, NDREQ);

#endif

#ifdef Ntty

winofcur = 0; /* initialize current window */

#endif

mapinit(DB0VEC, _panic, DB0VEC); /* divide by zero */

mapinit(SSTEPVEC, _panic, SSTEPVEC); /* single step */

mapinit(BKPTVEC, _panic, BKPTVEC); /* breakpoint */

mapinit(OFLOWVEC, _panic, OFLOWVEC); /* overflow */

mapinit(CBRKVEC, cbrkint, CBRKVEC); /* ctrl-break */

#ifdef NDEVS

for (i=0 ; i<NDEVS ; i++) { /* initialize devices */

dvptr = &devtab[i];

if (dvptr->dvivec && mapinit(dvptr->dvivec,

dvptr->dviint, dvptr->dvminor) == SYSERR)

return(SYSERR);

if (dvptr->dvovec && mapinit(dvptr->dvovec,

dvptr->dvoint, dvptr->dvminor) == SYSERR)

return(SYSERR);

init(i); /* initialize the device */

}
#endif

if (mapinit(CLKVEC | BIOSFLG, clkint, 0) == SYSERR)

return(SYSERR);

return(OK);

}

-- --

228 System Initialization Chap. 13

The procedure main itself is exceedingly simple. It disables interrupts and calls pro-
cedure sysinit to do the initialization. When sysinit returns, it has made the running pro-
gram into process 0, but interrupts remain disabled and no other processes exist. After
printing a few introductory messages, main enables interrupts, creates the BUTLER pro-
cess, and calls create to start a process running the user’s main program xmain.

Because the process executing main has become the null process, it cannot exit,
sleep, wait for a semaphore, or suspend itself. If the initialization routine needed to per-
form any of these actions, it would have created another process to be the null process,
but that seems unnecessary. Once initialization is complete and a process has been creat-
ed to execute the user’s program, the null process just falls into an infinite loop, giving
resched a process to schedule when no user processes are ready to run.

The null process is slightly more sophisticated than it may seem. Conceptually, it
executes an infinite loop. Actually, the loop invokes the macro pause, which expands to
a call to the assembly language routine sys_wait defined in eidi.asm. Sys_wait enables
interrupts and executes the special 8088 machine instruction HLT, which stops the pro-
cessor but leaves interrupts enabled. After an interrupt has been processed, the CPU
starts executing the code immediately following the pause and continues around the loop
until it encounters the pause again. Pausing the CPU when there are no computations to
perform minimizes interference between the CPU and other devices using the system
bus, because it prevents the CPU from fetching instructions from memory. On some sys-
tems, such minimization is important when devices like disks are performing DMA
transfer because it means the transfer will take less time.

13.4 Transforming The Program Into A Process

Procedure sysinit performs the tough part of system initialization. It initializes the
system data structures like the semaphore table, the process table, and the free memory
list. Obtaining a large block of free memory for this list is the most involved part. The
standard C procedure malloc is called to obtain the largest possible memory block; the
size of the allocated memory block is reduced slightly to allow for additional malloc allo-
cations used by C library routines to access MS-DOS facilities. The global variables end
and maxaddr are set to the beginning of the allocated block (the end of data space plus
the C system stack) and the maximum free space address, respectively. These are round-
ed up and truncated (to ensure that the addresses lie on byte boundaries that are multiples
of four, required by the getmem and freemem procedures), and the free memory list is ini-
tialized.

Finally, sysinit sets up the intmap table. First it sets up error handlers for divide by
zero and overflow conditions, and the Ctrl-Break handler for system termination. Then it
calls mapinit for all those devices defined in devtab whose interrupts must be revectored
and calls init once for each device in the system. Recall that procedure init, in turn, calls
the actual device initialization routines indirectly through devtab.

-- --

Sec. 13.4 Transforming The Program Into A Process 229

The most interesting piece of initialization code occurs about half-way through
sysinit when it fills in the process table entry for process zero. Most of the process table
fields, like the process name field, are merely dressing to make debugging easier. The
real work is done by only two lines that assign the process state field PRCURR and the
current process id variable, currpid, the index of the null process. Until these two values
are in place, rescheduling would be impossible. Once they have been assigned, however,
the program becomes a currently running process that resched can identify as process 0.
All that remains is to initialize the other pieces of the system so that all services are avail-
able before nulluser starts a process executing the user’s program.

Sysinit also determines the base of the null process stack in its process table entry
and does additional compiler-specific stack initialization if necessary. Stack routines for
PC-Xinu compiled with the Microsoft C compiler are in the file stack.asm:

-- --

230 System Initialization Chap. 13

; stack.asm - _sys_stknpb, _sys_stkinit

include dos.asm

dseg

; MS-DOS C compiler stack limit register

extrn STKHQQ:word

endds

pseg

public _sys_stknpb

public _sys_stkinit

;---

; _sys_stknpb -- return null process pbase stack base pointer

;---

; char *sys_stknpb()

_sys_stknpb proc near

mov ax,STKHQQ ; get lower stack limit

ret

_sys_stknpb endp

;---

; _sys_stkinit -- run-time stack initialization

;---

; void sys_stkinit()

_sys_stkinit proc near

mov STKHQQ,0 ; set stack base to zero

ret

_sys_stkinit endp

endps

end

Sys_stknpb sets the null process stack base, and sys_stkinit essentially disables stack
overflow checking generated by the C compiler.

Code generated by the Turbo C compiler does not do run-time stack checking, and
consequently stack initialization does not need to be done in this case.

-- --

Sec. 13.5 Summary 231

13.5 Summary

Initialization is the last step of system design; it should be postponed to avoid
changing the design simply to make it easier. We have discussed initialization here be-
cause it shows how the components designed so far can form a usable system.

FOR FURTHER STUDY

Many books comment on system startup. Both Habermann [1976] and Calingaert
[1982] touch on the subject. One of the few detailed examples of system startup can be
found in Madnick and Donovan [1974], which describes the IBM System/360 ‘‘cold
start’’ procedure.

EXERCISES

13.1 Is the order of initialization important for the process table, semaphore table, memory free
list, devices, and ready list?

13.2 Explain, by tracing through the procedures involved, what would go wrong if main did not
disable interrupts before calling sysinit.

13.3 Create a disk from which PC-Xinu can be loaded and executed using the PC bootstrap
loader. Alternatively, write a bootstrap loader that loads and executes PC-Xinu from a
PC-Xinu formatted disk.

