
5

More Process Management

Chapter 4 discussed context switching and showed how processes move between the
ready and current states. This chapter shows how new processes come into existence in
the first place and how they eventually exit. It also introduces a new process state,
suspended, and explores routines that move processes among the current, ready, and
suspended states.

5.1 Process Suspension And Resumption

Having a way to temporarily stop a process from executing and then to restart it
proves to be quite useful. We will say that a stopped process has been placed in a state of
‘‘suspended animation.’’ Suspended animation can be used, for example, when a pro-
cess wants to wait for one of several restart conditions without knowing which will occur
first.

The first step in implementing suspended animation consists of defining operations
that will be used to suspend processes. In this case, the choice is obvious because only
two are needed: suspend, to stop a process, and resume, to restart it.

Because suspended processes are not eligible to use the CPU, a new process state is
needed to distinguish them from ready and current processes. We will call the new state
suspended. Figure 5.1 summarizes the actions that suspend and resume perform, show-
ing how processes move among the ready, current, and suspended states.

79

-- --

80 More Process Management Chap. 5

READY CURRENT

resched

resched

SUSPENDED
suspendresume

suspend

create

Figure 5.1 Transitions among the current, ready, and suspended states

The details of suspend and resume are obvious. Suspend needs an argument that
specifies the process to be suspended. It must verify that the process to be suspended is
either ready or current. Resume also needs an argument that specifies the process to be
restarted; it must verify that the specified process is in the suspended state.

Process resumption is straightforward. Resume only needs to move the process back
to the ready list and change its state. Suspension is not much more complex. Suspending
a ready process involves changing the state recorded in its process table entry and remov-
ing the process from the ready list, so resched will not switch to it. The currently execut-
ing procedure can suspend itself by passing suspend its own process id:

suspend(getpid());

Suspending the current process involves moving it to the suspended state and then
rescheduling to allow another process to execute.

5.1.1 Implementation Of Resume

Procedure resume moves a suspended process back to the ready state where it be-
comes eligible for processor service. The code is contained in file resume.c.

-- --

Sec. 5.1 Process Suspension And Resumption 81

/* resume.c - resume */

#include <conf.h>

#include <kernel.h>

#include <proc.h>

/*--

* resume -- unsuspend a process, making it ready; return the priority

*--

*/

SYSCALL resume(pid)

int pid;

{
int ps; /* saved processor status */

struct pentry *pptr; /* pointer to proc. tab. entry */

int prio; /* priority to return */

disable(ps);

if (isbadpid(pid) | | (pptr = &proctab[pid])->pstate != PRSUSP) {
restore(ps);

return(SYSERR);

}
prio = pptr->pprio;

ready(pid);

resched();

restore(ps);

return(prio);

}

Although resume calls ready to link the process into the ready list, it performs important
chores that ready does not. It checks to be sure that its argument specifies a valid process
and that the referenced process is suspended. It also disables interrupts before calling
ready. These actions make resume callable from a user’s program.

Sometimes it is useful for the process calling resume to know the priority of the pro-
cess it restarts, so resume returns that priority as its value. Care must be taken to capture
the priority before the call to ready because the resumed process may start running when
ready calls resched (before the process executing resume completes). The delay that oc-
curs between the call to ready and the next instruction can be arbitrarily long because an
arbitrary number of processes can execute before the calling process is rescheduled. To
be sure that the returned priority reflects the resumed process’ priority at the time of
resumption, resume makes a copy in local variable prio before calling ready and returns
the value in prio.

-- --

82 More Process Management Chap. 5

5.1.2 The Return Values SYSERR And OK

File resume.c includes file kernel.h along with conf.h and proc.h. Kernel.h, shown
later in this chapter, defines several constants used throughout PC-Xinu, including the in-
tegers SYSERR and OK. We have already encountered SYSERR in Chapter 2 and OK in
Chapter 3. By convention, PC-Xinu procedures always return SYSERR to indicate that
their arguments were unacceptable or that something else prevented successful comple-
tion of the operation they tried to perform. Similarly, routines like ready that do not use
the returned value to carry information back to the caller return the integer OK to indi-
cate successful completion.

5.2 System Calls

The precautions that resume takes to verify that an operation is legal make it a gen-
eral purpose routine that can be invoked by any process at any time. It is our first exam-
ple of what are generally referred to as system calls. System calls stand between a naive
user’s program and the rest of the operating system, so they must protect the internal sys-
tem from illegal use. As the examples in Chapter 1 illustrate, systems calls do more than
merely protect the system. To the programmer, system calls define the exterior of the
operating system by providing an interface through which the user accesses all system
services.

When a process executes a system call like resume and the procedures that resume
calls, it changes the process table and other system data structures like the q structure.
There is only one process table in the system, shared by all processes in the system. How
can a process be sure that no other process will interfere by trying to change the process
table at the same time? For one thing, it must not call resched because rescheduling
could mean a context switch to another process that needs to change the system tables.
We will see that rescheduling can also result when a device interrupts because interrupt
routines sometimes call resched as well. To prevent interrupts, resume invokes the pro-
cedure disable to disable processor interrupts. Disable records the current interrupt state
(actually the FLAGS register contents), disables processor interrupts, and returns the
recorded interrupt state. Just before leaving resume, the process calls the procedure re-
store to reset the interrupt state to its original value. Resume cannot merely enable inter-
rupts before returning to its caller, because the caller may have been executing with in-
terrupts disabled. Therefore, resume restores the interrupt state to its original value be-
fore returning.

5.2.1 Disable and Restore

Actually, disable is expanded by the C preprocessor into a call to an assembly language
procedure sys_disabl, which records the current value of the FLAGS register, disables in-
terrupts, and returns the recorded FLAGS register value. Accessing the FLAGS register
and disabling interrupts are low-level operations that must be carried out in assembly

-- --

Sec. 5.2 System Calls 83

language. Similarly, restore is in reality an assembly language procedure sys_restor,
which deposits its argument into the FLAGS register. Disable and restore are usually
used in pairs, bracketing critical sections of code which must not be interrupted by other
system activities.

The code for sys_disabl and sys_restor is in the file eidi.asm. This file also contains
other low-level utility functions including sys_enabl for enabling interrupts, sys_wait for
suspending the processor waiting for an interrupt, and sys_hlt for returning control to the
host operating system.

; eidi.asm - _sys_disabl, _sys_enabl, _sys_restor, _sys_wait, _sys_hlt

include dos.asm ; segment macros

dseg

; null data segment

endds

pseg

public _sys_disabl,_sys_restor,_sys_enabl,_sys_wait,_sys_hlt

;---

; _sys_disabl -- return interrupt status and disable interrupts

;---

; int sys_disabl()

_sys_disabl proc near

pushf ; put flag word on the stack

cli ; disable interrupts!

pop ax ; deposit flag word in return register

ret

_sys_disabl endp

;---

; _sys_restor -- restore interrupt status

;---

; void sys_restor(ps)

; int ps;

_sys_restor proc near

push bp

mov bp,sp ; C calling convenion

push [bp+4]

popf ; restore flag word

pop bp

ret

_sys_restor endp

-- --

84 More Process Management Chap. 5

;---

; _sys_enabl -- enable interrupts unconditionally

;---

; void sys_enabl()

_sys_enabl proc near

sti ; enable interrupts

ret

_sys_enabl endp

;---

; _sys_wait -- wait for interrupt

;---

; void sys_wait()

_sys_wait proc near

pushf

sti ; interrupts must be enabled here

hlt

popf

ret

_sys_wait endp

;---

; _sys_hlt -- halt the current program and return to host

;---

; void sys_hlt()

_sys_hlt proc near

mov ah,4ch ; terminate function

xor al,al ; OK return code

int 21h ; MS-DOS function call

ret

_sys_hlt endp

endps

end

5.2.2 Implementation of Suspend

Suspending a process is not much more complex than resuming a suspended one.
File suspend.c contains the code. Suspend first checks to see that argument pid specifies
a valid process that is currently executing or ready. If the process to be suspended is in
the ready state, it must be removed from the ready list and moved to the suspended state.

-- --

Sec. 5.2 System Calls 85

/* suspend.c - suspend */

#include <conf.h>

#include <kernel.h>

#include <proc.h>

/*--

* suspend -- suspend a process, placing it in hibernation

*--

*/

SYSCALL suspend(pid)

int pid; /* id of process to suspend */

{
struct pentry *pptr; /* pointer to proc. tab. entry */

int ps; /* saved processor status */

int prio; /* priority returned */

disable(ps);

if (isbadpid(pid) | | pid==NULLPROC | |
((pptr= &proctab[pid])->pstate!=PRCURR&&pptr->pstate!=PRREADY)) {

restore(ps);

return(SYSERR);

}
if (pptr->pstate == PRREADY) {

dequeue(pid);

pptr->pstate = PRSUSP;

} else {
pptr->pstate = PRSUSP;

resched();

}
prio = pptr->pprio;

restore(ps);

return(prio);

}

5.2.3 Suspending The Current Process

Although suspending the currently executing process may seem odd, it turns out to
be quite useful, and the code brings up two interesting points. First, the currently execut-
ing process will stop executing, at least temporarily, so it must arrange to switch to
another process. To do so, it merely marks its process state suspended (PRSUSP) and
calls resched. If you remember, resched looks at the process state to determine the
disposition of the current process. In this case, it will switch context without moving the
current process back onto the ready list. Second, suspend, like resume, returns the priori-

-- --

86 More Process Management Chap. 5

ty of the suspended process to its caller. However, suspend records the process priority
after it has suspended the process. When a process suspends another one, the code
makes perfect sense because nothing can change the priority while suspend executes with
interrupts disabled. But when a process suspends itself, it calls resched, allowing other
processes to execute. They may change the process’ priority. When suspend eventually
resumes executing, it reports the priority at the time of resumption. The exercises con-
sider the motivation for this arrangement.

You may have noticed that suspend and resume do not maintain a separate linked
list of suspended processes as ready did. The reason is simple. Ready processes are kept
on an ordered list only to speed the search for the highest priority process during
rescheduling. Because the system never searches through suspended processes looking
for one to resume, the set of suspended processes need not be kept on a list.

5.3 Process Termination

Suspend freezes processes, but leaves them in the system so they can be resumed
later. Another system call, kill stops a process immediately and removes it from the sys-
tem completely. Once a process has been removed, it cannot be restarted because kill
eradicates its entire record, freeing the process table entry.

The actions taken by kill depend on the process’ state. Before writing the code, the
designer needs to have some notion of the possible states and what it would mean to ter-
minate a process in that state. For example, processes that are ready, sleeping, or waiting
are all kept on linked lists in the q structure, so kill must dequeue them. If the process is
waiting for a semaphore, kill must adjust the semaphore count as well. Not all these
cases will make complete sense until you know more about the process states.

The code for kill appears in file kill.c, below. Consider how it operates for a process
in the ready state. Kill checks its argument, pid, to ensure that it corresponds to a valid,
active process by verifying that it is in the correct range, and that the process table entry
is not free. It then decrements numproc, the global variable that records the number of
active user processes. Next, kill calls procedure freestk to free memory that the process
used for a stack. Freestk unlinks the process from the ready list with procedure dequeue
and frees the process table entry by assigning its state field PRFREE. Because the pro-
cess no longer appears on the ready list, it will never regain control of the CPU.

Now consider what happens when kill needs to terminate the currently executing
process. As before, it validates its argument and decrements the count of active
processes. If the current process happens to be the last user process, decrementing
numproc makes it zero, so kill calls procedure xdone, shown below. After kill marks the
current process’ state free, it calls resched to pass control to another ready process.

-- --

Sec. 5.3 Process Termination 87

/* kill.c - kill */

#include <conf.h>

#include <kernel.h>

#include <proc.h>

#include <sem.h>

#include <mem.h>

/*--

* kill -- kill a process and remove it from the system

*--

*/

SYSCALL kill(pid)

int pid; /* process to kill */

{
struct pentry *pptr; /* points to proc. table for pid*/

int ps; /* saved processor status */

disable(ps);

if (isbadpid(pid) | | (pptr = &proctab[pid])->pstate==PRFREE) {
restore(ps);

return(SYSERR);

}
if (--numproc == 0)

xdone();

freestk(pptr->pbase, pptr->plen);

switch (pptr->pstate) {

case PRCURR: pptr->pstate = PRFREE; /* suicide */

resched();

case PRWAIT: semaph[pptr->psem].semcnt++;

/* fall through */

case PRSLEEP:

case PRREADY: dequeue(pid);

/* fall through */

default: pptr->pstate = PRFREE;

}
restore(ps);

return(OK);

}

-- --

88 More Process Management Chap. 5

/* xdone.c - xdone */

#include <conf.h>

#include <kernel.h>

#include <proc.h>

#include <io.h>

#include <disk.h>

#include <tty.h>

/*--

* xdone -- print system termination message and terminate PC-Xinu

*--

*/

int xdone()

{
int kprintf();

int ps;

int i;

#ifdef Ndsk

for (i=0; i<Ndsk; i++)

control(dstab[i].dnum,DSKSYNC); /* sync the disks */

#endif

sleep(1); /* let tty output settle */

disable(ps);

maprestore(); /* restore interrupt vectors */

restore(ps);

kprintf("\n\n-- system halt --\n\n");

if (numproc==0)

kprintf("All user processes have completed\n");

else

kprintf("PC-Xinu terminated with %d process%s active\n",

numproc, ((numproc==1) ? "" : "es"));

kprintf("Returning . . .\n\n");

halt(); /* return to caller */

}

5.4 Kernel Declarations

The file kernel.h defines macros including disable and restore mentioned above, as
well as a few other variables and symbolic constants used throughout PC-Xinu.
Although not all the names that appear in it make sense yet, they will by the end of the
chapter.

-- --

Sec. 5.4 Kernel Declarations 89

/* kernel.h - isodd,disable,restore,enable,pause,halt,xdisable,xrestore */

/* Symbolic constants used throughout Xinu */

typedef char Bool; /* Boolean type */

typedef unsigned int word; /* word type */

#define FALSE 0 /* Boolean constants */

#define TRUE 1

#define NULL (char *)0 /* Null pointer for linked lists*/

#define SYSCALL int /* System call declaration */

#define LOCAL static /* Local procedure declaration */

#define INTPROC int /* Interrupt procedure */

#define PROCESS int /* Process declaration */

#define WORD word /* 16-bit word */

#define MININT 0100000 /* minimum integer (-32768) */

#define MAXINT 0077777 /* maximum integer (+32767) */

#define MINSTK 256 /* minimum process stack size */

#define NULLSTK 256 /* process 0 stack size */

#define OK 1 /* returned when system call ok */

#define SYSERR -1 /* returned when sys. call fails*/

/* initialization constants */

#define INITARGC 2 /* initial process argc */

#define INITSTK 512 /* initial process stack */

#define INITPRIO 20 /* initial process priority */

#define INITNAME "xmain" /* initial process name */

#define INITRET userret /* processes return address */

#define INITREG 0 /* initial register contents */

#define QUANTUM 1 /* clock ticks until preemption */

/* misc. utility functions */

#define isodd(x) (01&(int)(x))

#define disable(x) (x)=sys_disabl() /* save interrupt status */

#define restore(x) sys_restor(x) /* restore interrupt status */

#define enable() sys_enabl() /* enable interrupts */

#define pause() sys_wait() /* machine "wait for interr." */

#define halt() sys_hlt() /* halt PC-Xinu */

#define xdisable(x) (x)=sys_xdisabl() /* save int & dosflag status */

#define xrestore(x) sys_xrestor(x) /* restore int & dosflag status */

/* system-specific functions and variables */

-- --

90 More Process Management Chap. 5

extern int sys_disabl(); /* return flags & disable ints */

extern void sys_restor(); /* restore the flag register */

extern void sys_enabl(); /* enable interrupts */

extern void sys_wait(); /* wait for an interrupt */

extern void sys_hlt(); /* halt the processor */

extern int sys_xdisabl(); /* Return interrupts to MS-DOS */

extern void sys_restor(); /* Interrupts back to Xinu */

/* process management variables */

extern int rdyhead, rdytail;

extern int preempt;

5.5 Process Creation

The system call create creates a new, independent process. The idea is to lay down
an exact image of the process as if it had been stopped while running, so ctxsw can
switch to it. Create finds a free (unused) slot in the process table, allocates space for the
new process’ stack, and fills in the process table entry.

A look at the code in file create.c explains most of the details. Procedure newpid
searches the process table for a free process id, returning SYSERR if none exists. Create
uses procedure roundew to round the specified stack size to the next largest even word
and calls getmem to allocate space for the stack (Chapter 8 discusses both of these
memory management routines).

We refer to the initial process stack as a pseudo-call because create carefully pushes
values on it to simulate a procedure call. In C, the pseudo-call consists of arguments and
a return address. When started, the new process begins executing the code for the desig-
nated procedure, obeying the normal calling conventions for accessing arguments and al-
locating local variables. In short, it behaves exactly as if it had been called from another
procedure.

How does the designer choose a return address value to use in the pseudo call? For-
tunately, there is a guideline for what happens when a process returns from its initial pro-
cedure: it should exit. Create makes the return address in the pseudo call the address of
procedure userret. If the process does attempt to return from the initial procedure, con-
trol passes to userret. Procedure userret terminates the calling process with kill.

Create also fills in the process table entry. Knowing that ctxsw switches to
processes by picking up register contents from its stack pointed to by the pregs field,
create fills in values on the stack and sets the pregs entry to point to the ‘‘top of stack.’’
The values for the SI, DI, and BP registers are immaterial, but the value for the FLAGS
register is important. Because the process should begin execution with interrupts en-
abled, the FLAGS register should have its interrupt bit set. Create makes the state of the
newly created process PRSUSP, leaving it suspended, but otherwise ready to run. Final-

-- --

Sec. 5.5 Process Creation 91

ly, create returns the process id of the newly created process. The id must be passed to
resume to start the new process executing.

Many of the process initialization details depend on the C run-time environment −
there is simply no way to start a process without facing such details. For example, create
pushes arguments onto the process stack so the first argument is near the top of the stack.
The code that pushes arguments is difficult to understand because create copies those ar-
guments directly from its own run-time stack onto the stack that it has allocated for the
new process. To do so, it finds the address of the arguments on its own stack and moves
through the list using pointer arithmetic. This is clearly a machine (and compiler) depen-
dent trick.

-- --

92 More Process Management Chap. 5

/* create.c - create, newpid */

#include <conf.h>

#include <kernel.h>

#include <proc.h>

#include <mem.h>

#define INITF 0x0200 /* initial flag register - set interrupt flag, */

/* clear direction and trap flags */

extern int INITRET(); /* location to return upon termination */

/*--

* create -- create a process to start running a procedure

*--

*/

SYSCALL create(procaddr,ssize,priority,namep,nargs,args)

int (*procaddr)(); /* procedure address */

word ssize; /* stack size in words */

short priority; /* process priority > 0 */

char *namep; /* name (for debugging) */

int nargs; /* number of args that follow */

int args; /* arguments (treated like an array) */

{
int pid; /* stores new process id */

struct pentry *pptr; /* pointer to proc. table entry */

int i; /* loop variable */

int *a; /* points to list of args */

char *saddr; /* start of stack address */

int *sp; /* stack pointer */

int ps; /* saved processor status */

disable(ps);

ssize = roundew(ssize);

if (ssize < MINSTK | | priority < 1 | |
(pid=newpid()) == SYSERR | |
((saddr=getstk(ssize)) == NULL)) {
restore(ps);

return(SYSERR);

}
numproc++;

pptr = &proctab[pid];

pptr->pstate = PRSUSP;

for (i=0 ; i<PNMLEN ; i++)

-- --

Sec. 5.5 Process Creation 93

pptr->pname[i] = (*namep ? *namep++ : ’ ’);

pptr->pname[PNMLEN]=’\0’;

pptr->pprio = priority;

pptr->phasmsg = 0; /* no message */

pptr->pbase = saddr;

pptr->plen = ssize;

sp = (int *) (saddr+ssize); /* simulate stack pointer */

sp -= 4; /* a little elbow room */

pptr->pargs = nargs;

a = (&args) + nargs; /* point past last argument */

for (; nargs > 0 ; nargs--) /* machine dependent; copy args */

*(--sp) = *(--a); /* onto created process’ stack */

(--sp) = (int)INITRET; / push on return address */

(--sp) = (int)procaddr; / simulate a context switch */

--sp ; /* 1 word for bp */

(--sp) = INITF; / FLAGS value */

sp -= 2; /* 2 words for si and di */

pptr->pregs = (char *)sp; /* save for context switch */

pptr->paddr = procaddr;

restore(ps);

return(pid);

}

/*--

* newpid -- obtain a new (free) process id

*--

*/

LOCAL newpid()

{
int pid; /* process id to return */

int i;

for (i=0 ; i<NPROC ; i++) { /* check all NPROC slots */

if ((pid=nextproc--) <= 0)

nextproc = NPROC-1;

if (proctab[pid].pstate == PRFREE)

return(pid);

}
return(SYSERR);

}

-- --

94 More Process Management Chap. 5

/* userret.c - userret */

#include <conf.h>

#include <kernel.h>

/*--

* userret -- entered when a process exits by return

*--

*/

userret()

{
int pid;

kill(pid=getpid());

kprintf("Fatal system error - unable to kill process %d",pid);

}

5.6 Utility Procedures

Three additional system calls help manage processes: getpid, getprio, and chprio.
Getpid allows a process to obtain its process id. Userret shows one reason a procedure
may need to know the id of the process executing it. Getprio allows a process to obtain a
process’ scheduling priority. Another useful system call, chprio, allows a process to
change a process’ priority. The implementation of all three routines is exceedingly sim-
ple:

/* getprio.c - getprio */

#include <conf.h>

#include <kernel.h>

#include <proc.h>

/*--

* getprio -- return the scheduling priority of a given process

*--

*/

SYSCALL getprio(pid)

int pid;

{
struct pentry *pptr;

int ps;

disable(ps);

-- --

Sec. 5.6 Utility Procedures 95

if (isbadpid(pid) | | (pptr = &proctab[pid])->pstate == PRFREE) {
restore(ps);

return(SYSERR);

}
restore(ps);

return(pptr->pprio);

}

After checking its argument, getprio extracts the scheduling priority for the speci-
fied process from the process table entry and returns the priority to the caller.

/* getpid.c - getpid */

#include <conf.h>

#include <kernel.h>

#include <proc.h>

/*--

* getpid -- get the process id of currently executing process

*--

*/

SYSCALL getpid()

{
return(currpid);

}

It may seem that procedure getpid is useless because it returns the value of variable
currpid, a value that the process could obtain directly with less overhead. Why not have
processes access currpid? If PC-Xinu is transported to a machine in which user
processes cannot access the address space occupied by the system, it may not be possible
for a user process to obtain the value of currpid directly.

-- --

96 More Process Management Chap. 5

/* chprio.c - chprio */

#include <conf.h>

#include <kernel.h>

#include <proc.h>

/*--

* chprio -- change the scheduling priority of a process

*--

*/

SYSCALL chprio(pid,newprio)

int pid;

int newprio; /* newprio > 0 */

{
int oldprio;

struct pentry *pptr;

int ps;

disable(ps);

if (isbadpid(pid) | | newprio<=0 | |
(pptr = &proctab[pid])->pstate == PRFREE) {

restore(ps);

return(SYSERR);

}
oldprio = pptr->pprio;

pptr->pprio = newprio;

restore(ps);

return(oldprio);

}

This implementation of chprio seems to do exactly what is needed. It checks to be
sure the specified process exists before changing the priority field in its process table en-
try. As the exercises point out, however, it contains a serious flaw.

5.7 Summary

This chapter has expanded the ideas of process management by discussing how to
add another layer of software on top of the scheduler and context switch. The new layer
includes routines to suspend and resume execution, as well as routines that create
processes and kill them. Finally, we looked at three utility procedures that obtain a pro-
cess’ identifier (getpid), obtain a process’ scheduling priority (getprio), or change a pro-
cess’ priority (chprio). Despite its brevity, the code built thus far forms the basis of a
process manager. With proper initialization and a few support routines, it will multiplex
the CPU among multiple computations.

-- --

Sec. 5.7 Summary 97

The following chapters discuss the design of synchronization and interprocess com-
munication, components that are built on top of the existing layers. Chapter 8 will dis-
cuss the only low-level layer that we have ignored so far, the memory manager. Follow-
ing that, we will continue the pattern of building layers, one on top of the other.

FOR FURTHER STUDY

Primitives for process creation and management vary widely among systems.
Calingaert [1982] includes a good survey of process creation techniques. Knuth [1968]
gives the details of coroutine activation; Ritchie and Thompson [1974] describe the fork
primitive used to create processes in the UNIX system.

EXERCISES

5.1 Processes can tell which of several events triggered their resumption if their priority is set to
a unique value before each call to resume. Use this method to create a process that suspends
itself and determines which of two other processes resumes it first.

5.2 Why does create build a pseudo-call that returns to userret at process exit instead of one that
calls kill directly?

5.3 Modify create to call kill directly, pushing the process id onto the stack as an argument to
kill.

5.4 One alternative to pushing the new process’ parameters directly onto its stack is to have the
caller construct an array of argument pointers, and have create copy pointers from the list
onto the new process’ stack. Show how to implement this approach, being careful to take
into account a variable number of parameters.

5.5 Global variable numproc tells the number of active user processes. Considering the code in
kill, can you tell whether the count in numproc should include the null process or not?

5.6 Find out how the trap or emt instructions can be used to pass control to a system call on the
PDP-11. What are the disadvantages of this mechanism? Hints: think of the memory needed
and the number of possible system calls.

5.7 Create leaves the new process suspended instead of running. Why?

5.8 Ctxsw is always called with interrupts disabled, and when it eventually returns to its caller,
interrupts will continue to be disabled. Can you save time in ctxsw by omitting the pushf and
popf instructions?

5.9 Procedure resume saves the resumed process’ priority in a local variable before calling ready.
Show that if it referenced pptr->prio after the call to ready, resume could return a priority
value that the resumed process never had (not even after resumption).

5.10 In procedure newpid, the variable nextproc is a global integer that tells the next process table
slot to check for a free one. Starting the search from where it left off eliminates looking past
the used slots again and again. Speculate on whether the technique is worthwhile.

-- --

98 More Process Management Chap. 5

5.11 Getpid simply returns the value of currpid to the caller. Discuss reasons for hiding the
operating system internals with system calls. Find out about address space mapping on a
machine more complex than an 8088, and consider why it might be necessary to have a sys-
tem call instead of allowing user processes to access currpid directly.

5.12 Procedure chprio contains a serious design flaw. Find it, describe its consequences, and
repair it.

