
15

High-Level Memory
Management and Message
Passing

This chapter describes the design of high-level buffer memory management and
message passing facilities. The motivation for buffer management comes from the disk
driver software that uses these facilities to allocate fixed-size buffers, to pass them
among processes freely, and to release them. To prevent the software from exhausting
memory resources, the high level memory manager must be able to limit the amount of
memory used for a given function. It must coordinate processes by blocking them until
their requests can be satisfied.

Network driver software, which is not considered in this book, requires message-
passing primitives for passing data among the layers efficiently. The high-level message
passing facility described in this chapter provides buffered message exchange through
named rendezvous points.

Instead of building these primitives directly into the driver software, we have chosen
to design general-purpose routines that can be used in a variety of ways. One advantage
of designing general-purpose primitives is that they become available to user programs.
Another advantage is that they can be implemented and tested independent of the specific
routines that use them. In the case of the primitives described in this chapter, testing can
be carried out even before the driver software has been designed. While we have said lit-
tle about testing up to this point, it should be obvious that systems as complicated as PC-
Xinu must be built and tested in small pieces; designs that attempt to integrate functions
into large subsystems are doomed to failure.

267

-- --

268 High-Level Memory Management and Message Passing Chap. 15

15.1 Self-Initializing Modules

Lower layers of the operating system, like the process manager, must be present
whenever a program runs. Higher layers like the disk software need not be included,
however, unless a program uses them. In PC-Xinu, optional software is stored in li-
braries, from which the linker selects the routines that are referenced when it constructs a
memory image. It is convenient to think of a set of related library routines as a module
that implements operations on some abstract data object. For example, one can imagine
a set of procedures push, pop, and makestack that push an element onto a stack, pop an
element from a stack, and create a stack.

In C, procedures that form a module can be combined into a single source file along
with the static data upon which they operate. When a program references one of the pro-
cedures in the file, the entire file is loaded. (Alternatively, the procedures can reside in
separate files and use shared external data structures.)

This chapter describes two modules − one that implements a mechanism for data ex-
change (called ports), and one that implements a mechanism for buffer storage allocation
(called buffer pools). Before describing the routines themselves, we address the issue of
how to initialize the static data associated with a module.

15.1.1 Specifying Initialization

The designer could arrange for the operating system to initialize each module when
it first starts. This solution has three drawbacks. First, if the system initialization pro-
cedure explicitly references an object, the linker would include that object (and all other
objects defined in the same file) in the memory image. Thus, every procedure and vari-
able from every library module would be present in memory − something that is clearly
undesirable on a small machine. Second, adding a module to a library would involve
changing the operating system initialization procedure. Third, users could not have their
modules initialized automatically because they may not be able to change the system ini-
tialization routine.

Forcing the programmers to initialize modules explicitly is equally undesirable.
They would have to know which primitives go with each module and remember to
change the way their programs performed initialization when they add or remove calls to
library procedures. Ideally, the routines that comprise a module should be self-
initializing; they should perform initialization automatically (and exactly once) as they
are called.

15.1.2 Automatic Initialization

In most environments, self-initialization is not difficult. Modules include a Boolean
variable that is set to false when the program is loaded. Each procedure in the module
checks the module’s Boolean variable when called, performing initialization if it is zero.
The initialization code assigns the Boolean variable the value true, so subsequent uses of
the module can proceed without calling the initialization procedure.

-- --

Sec. 15.1 Self-Initializing Modules 269

Linker-defined Boolean variables do not suffice for self-initialization in environ-
ments where the system can be restarted without being reloaded. There are two ways to
overcome the problem: the system could be changed to set all static memory to zero at
startup, or a new operating system primitive could be added that tests whether something
has been initialized independent of the values in static memory. We have chosen the
latter option; the next section describes such a primitive.

15.2 Memory Marking

This section introduces a technique called memory marking that enables modules to
initialize themselves. Memory marking does not perform initialization; it is merely a ser-
vice supplied by the system that reliably determines whether a memory location has been
‘‘marked’’ since the system started. The essential idea is this: the system maintains a set
S of ‘‘marked’’ memory locations. When the system starts running, it sets S to empty.
As execution proceeds, processes call system procedure mark(k) to add memory location
k to set S; they call Boolean function unmarked(k) to test whether the location of integer
k is currently in set S.

The implementation of memory marking is surprising because the operations are ex-
tremely efficient. Initializing S to empty at startup requires one instruction. Testing
whether a location has been marked or marking a location, each require only a few in-
structions; their execution cost does not depend on the number of locations that have
been marked. The trick required to achieve this efficiency comes from a clever use of
pointers − the ‘‘marked’’ location contains an index that lets the system verify whether it
is in S without searching the entire set.

15.3 Implementation Of Memory Marking

The memory marking routines maintain a set of addresses of ‘‘marked’’ locations in
array marks. Each marked location contains the integer index in marks corresponding to
that location’s mark. To test whether the location of integer L has been marked, un-
marked checks whether marks[L] contains the address of L. The code for predicate un-
marked is found in file mark.h.

-- --

270 High-Level Memory Management and Message Passing Chap. 15

/* mark.h - unmarked */

#ifdef MEMMARK

#ifndef MAXMARK

#define MAXMARK 20 /* maximum number of marked locations */

#endif

extern int *(marks[]);

extern int nmarks;

extern int mkmutex;

typedef int MARKER[1]; /* by declaring it to be an array, the */

/* name provides an address so forgotten*/

/* &’s don’t become a problem */

#define unmarked(L) (L[0]<0 | | L[0]>=nmarks | | marks[L[0]]!=L)

#endif /* def MEMMARK */

Note that unmarked is defined as a macro but could easily have been written as a subrou-
tine that returns a value. It is important to understand the difference between a macro
and a procedure in this context. Subroutine calls always result in longer execution time,
since there is substantial overhead for passing parameters, calling, and returning; but the
code for a subroutine is included only once in the load module. Macros, on the other
hand, are expanded at compile time and do not incur the same run-time overhead as sub-
routines; they do, however, result in more code generated at each macro call. It is con-
sidered good practice to use macros where execution speed, rather than code space, is an
important issue, as is the case with memory marking.

Marking requires the system to add a new element to the marks array and to place
the appropriate index in the ‘‘marked’’ location. The code is found in file mark.c.

/* mark.c - _mkinit, mark */

#include <conf.h>

#include <kernel.h>

#include <mark.h>

#ifdef MEMMARK

int *marks[MAXMARK];

int nmarks;

int mkmutex;

/*--

-- --

Sec. 15.3 Implementation Of Memory Marking 271

* _mkinit -- initialize memory marking; called once at system startup

*--

*/

_mkinit()

{
mkmutex = screate(1);

nmarks = 0;

}

/*--

* mark -- mark a location if it has not been marked

*--

*/

mark(loc)

int loc[];

{
if (unmarked(loc) == 0)

return(0);

if (nmarks>=MAXMARK)

return(SYSERR);

wait(mkmutex);

marks[loc[0] = nmarks++] = loc;

signal(mkmutex);

return(OK);

}
#endif

The buffer pool routines, found in the next section, show how modules use these memory
marking primitives for self-initialization.

15.4 Partitioned Space Allocation

Routines getmem and freemem, that were described in Chapter 8, constitute the
basic memory manager. They place no limit on the amount that a given process can allo-
cate, nor do they attempt to divide free space ‘‘fairly’’ − they merely honor requests on a
first-come-first-served basis until no free memory remains. Once free memory has been
exhausted, these routines reject further requests without waiting for memory to be
released. Such global allocation strategies are relatively efficient, but because they force
all processes to contend for the same memory they permit deprivation, a situation in
which a process or processes cannot obtain memory because it has been consumed.

-- --

272 High-Level Memory Management and Message Passing Chap. 15

There are a number of situations illustrating the inadequacy of global memory allo-
cation. For example, what should a process do if a request for memory fails? It is unrea-
sonable for a process to terminate itself if this should occur, but busy-waiting for avail-
able space is equally unreasonable. In another situation, a process may allocate all avail-
able memory for some processing activity, only to find it impossible to write the results
to disk because there is no space left to allocate a disk request buffer.

Global memory allocation schemes also do not work well for communication
software because the time required to process messages is often longer than the time re-
quired to read them, and exhaustive allocation can lead to disaster. Consider, for exam-
ple, the situation where a receiver process repeatedly obtains a buffer, reads data into it
from the network, and then enqueues the buffer for processing. As incoming messages
pile up waiting to be processed, the process reading input keeps allocating space for new
messages from the free memory. In the worst case, it will use up all the available space.
One might expect that the process consuming messages would eventually release space,
allowing the reader to continue, but this may not happen. The process that consumes in-
coming messages must also allocate space to perform such tasks as reassembling long
messages, or forwarding copies of messages to other machines. If no space remains, the
system can deadlock with the consumer process waiting for space it needs to handle ex-
isting messages, and the reader process waiting for space it needs to read more messages.

To prevent deadlocks caused by exhaustive memory allocation schemes, higher-
level memory management must be designed to partition free memory and control the al-
location and deallocation independently within each partition. By limiting the amount of
memory that processes use for a particular function, the system can guarantee that exces-
sive requests will not lead to global deprivation. Furthermore, the system can assume
that memory allocated for a particular function will always be returned, so it can arrange
to suspend processes until their memory request can be satisfied, eliminating the over-
head introduced by busy waiting. The mechanism we have chosen to handle these tasks
is a buffer pool manager.

15.5 Buffer Pools

Each buffer pool consists of a fixed number of memory blocks, where all blocks in a
given pool are the same length. The term buffer was chosen to reflect the intended use in
I/O routines and communication software.

The memory space for a particular set of buffers is allocated all at once, when the
pool is created. Each pool is identified by an integer pool identifier through which
processes refer to it. After initialization, a process can request a buffer from a pool (by
giving its identifier) or release a buffer back to a pool. There is no need to specify a
buffer length in these requests because the size of memory blocks allocated to the pool is
fixed when the pool is created.

The buffer pool mechanism differs from the low-level memory manager in another
way: processes that request buffers will block until one is available. As usual, sema-
phores are used to control the resource. A process requesting a buffer from a pool waits

-- --

Sec. 15.5 Buffer Pools 273

on that pool’s semaphore; the call returns immediately if buffers remain in the pool. If
no buffers remain, the process blocks. Eventually, when another process returns a buffer
to a pool, it signals the pool’s semaphore, allowing a blocked process to obtain the buffer
and resume execution.

The pool data structures consist of a table that contains a semaphore and a linked list
of buffers for each pool. Pertinent declarations can be found in file bufpool.h:

/* bufpool.h */

#ifndef NBPOOLS

#define NBPOOLS 5 /* Maximum number of pools */

#endif

#ifndef BPMAXB

#define BPMAXB 512 /* Maximum buffer length */

#endif

#define BPMINB 2 /* Minimum buffer length */

#ifndef BPMAXN

#define BPMAXN 100 /* Maximum buffers in any pool */

#endif

struct bpool { /* Description of a single pool */

int bpsize; /* size of buffers in this pool */

int *bpnext; /* pointer to next free buffer */

int bpsem; /* semaphore that counts buffers*/

}; /* currently in THIS pool */

extern struct bpool bptab[]; /* Buffer pool table */

extern int nbpools; /* current number of pools */

extern char *getbuf();

#ifdef MEMMARK

extern MARKER bpmark;

#endif

Structure bpool defines the contents of entries in the buffer pool table, bptab. The
buffers for a given pool are linked into a list, with head bpnext. Semaphore bpsem con-
trols allocation from the pool, and integer bpsize gives the length of buffers in the pool.

Processes call procedure getbuf to obtain a buffer, passing the pool identifier as an
argument. Getbuf works as expected, waiting until a buffer is available and then unlink-
ing it from the list:

-- --

274 High-Level Memory Management and Message Passing Chap. 15

/* getbuf.c - getbuf */

#include <conf.h>

#include <kernel.h>

#include <mark.h>

#include <bufpool.h>

/*--

* getbuf -- get a buffer from a preestablished buffer pool

*--

*/

char *getbuf(poolid)

int poolid;

{
int ps;

int *buf;

disable(ps);

if (poolid<0 | | poolid >= nbpools

#ifdef MEMMARK

| | unmarked(bpmark)

#endif

) {
restore(ps);

return(NULL);

}
wait(bptab[poolid].bpsem);

buf = bptab[poolid].bpnext;

bptab[poolid].bpnext = (int *) *buf;

*buf++ = poolid;

restore(ps);

return((char *)buf);

}

The conditional code at the beginning of getbuf contains an if statement that deter-
mines whether the buffer pool routines have been initialized and returns SYSERR if they
have not. The statement is valid only if memory marking is available on the system, so it
has been made into conditional code that will be compiled only if constant MEMMARK is
defined.

Observant readers may have noticed that getbuf does not return the address of the
beginning of the physical buffer to its caller. Instead, it stores the pool id in the first in-
teger location and returns the address just beyond the id. A user need not worry that the
first location in the buffer holds the pool id − the initialization routine actually allocates

-- --

Sec. 15.5 Buffer Pools 275

extra space in each buffer to hold the id when it creates the pool. As we will see, the pro-
cedure freebuf uses this pool id when it returns the buffer to free storage, making it un-
necessary to specify the pool id when returning buffers. The technique of identifying a
buffer automatically turns out to be useful when buffers are returned by processes other
than the one that allocated them.

15.6 Returning Buffers To The Buffer Pool

Procedure freebuf returns a buffer to the correct pool given its address. The code is
located in file freebuf.c:

-- --

276 High-Level Memory Management and Message Passing Chap. 15

/* freebuf.c - freebuf */

#include <conf.h>

#include <kernel.h>

#include <mark.h>

#include <bufpool.h>

/*--

* freebuf -- free a buffer that was allocated from a pool by getbuf

*--

*/

int freebuf(buf)

char *buf;

{
int ps;

int poolid;

int *bf;

if (buf == NULL)

return(SYSERR);

disable(ps);

bf = (int *) buf;

poolid = *(--bf);

if (poolid<0 | | poolid>=nbpools

#ifdef MEMMARK

| | unmarked(bpmark)

#endif

) {
restore(ps);

return(SYSERR);

}
*bf = (int)bptab[poolid].bpnext;

bptab[poolid].bpnext = bf;

signal(bptab[poolid].bpsem);

restore(ps);

return(OK);

}

Freebuf obtains the pool id that getbuf stored in the block when it was allocated,
links the buffer back into the appropriate pool, and signals the pool semaphore bpsem, al-
lowing a process to use the buffer.

-- --

Sec. 15.7 Creating A Buffer Pool 277

15.7 Creating A Buffer Pool

Procedure mkpool creates a new buffer pool and returns its id. Like most other
identifiers in PC-Xinu, the pool id is merely an index into the global buffer pool table.
Mkpool computes the size of memory required and calls getmem to allocate it. It then
divides up the memory into buffers and links them together into a free list. Enough space
is allocated for each buffer so the integer pool id can be stored in the buffer along with
user data. After the free list has been formed, mkpool returns its id to the caller:

/* mkpool.c - mkpool */

#include <conf.h>

#include <kernel.h>

#include <mark.h>

#include <mem.h>

#include <bufpool.h>

/*--

* mkpool -- allocates buffers for a buffer pool

* and links them together

*--

*/

int mkpool(bufsiz, numbufs)

int bufsiz, numbufs;

{
int ps;

int poolid;

char *where;

disable(ps);

#ifdef MEMMARK

if (unmarked(bpmark))

poolinit();

#endif

bufsiz = (bufsiz + 1) & ˜1; /* round up */

if (bufsiz<BPMINB | |
bufsiz>BPMAXB | |
numbufs<1 | |
numbufs>BPMAXN | |
nbpools >= NBPOOLS | |
(where=getmem((bufsiz+sizeof(int))*numbufs)) == NULL) {

restore(ps);

-- --

278 High-Level Memory Management and Message Passing Chap. 15

return(SYSERR);

}
poolid = nbpools++;

bptab[poolid].bpnext = (int *)where;

bptab[poolid].bpsize = bufsiz;

bptab[poolid].bpsem = screate(numbufs);

bufsiz += sizeof(int);

for (numbufs-- ; numbufs>0 ; numbufs--, where += bufsiz)

*((int *) where) = bufsiz+(int)where;

*((int *) where) = (int) NULL;

restore(ps);

return(poolid);

}

15.8 Initializing The Buffer Pool Table

Procedure poolinit initializes the buffer pool table, bptab. The code, found in file
poolinit.c, uses conditional compilation to select one of two versions. If memory mark-
ing is available, poolinit and the other buffer pool routines use it to self-initialize. If
memory marking is not available, the user must call poolinit explicitly.

Refer to the conditional code in mkpool to see how it calls poolinit. When compiled
to use memory marking, mkpool performs an extra test at the beginning: it invokes un-
marked to test whether the module’s memory marker, bpmark, has been marked. If it has
not, then mkpool needs to initialize the module, so it calls poolinit and marks bpmark.
When mkpool is compiled without memory marking, the user must call poolinit explicitly
before creating any buffer pools.

/* poolinit.c - poolinit */

#include <conf.h>

#include <kernel.h>

#include <mark.h>

#include <bufpool.h>

struct bpool bptab[NBPOOLS];

int nbpools;

#ifdef MEMMARK

MARKER bpmark;

#endif

/*--

* poolinit -- initialize the buffer pool

-- --

Sec. 15.8 Initializing The Buffer Pool Table 279

*--

*/

SYSCALL poolinit()

{
#ifdef MEMMARK

int status;

if ((status=mark(bpmark)) == SYSERR)

panic("poolinit - memory marking error");

if (status == 0) /* already marked */

return(OK);

#endif

nbpools = 0;

return(OK);

}

15.9 Communication Ports

Communication ports are rendezvous points through which processes exchange
messages. They differ from process-to-process message passing, described in Chapter 7.
Because ports allow multiple outstanding messages, any process can receive a message
from a port, and processes accessing ports are blocked until requests can be satisfied.
Each port, which holds a fixed set of (one-word) messages, consists of a finite length
message queue. Processes producing messages send them to the port with primitive
psend (messages are deposited in FIFO order). The sending process can continue to exe-
cute after depositing its message as long as space remains in the port. If no space
remains in the port, however, the sending process is blocked until messages have been re-
moved and space becomes available.

Processes invoke primitive preceive to remove the next message from a port. Like
psend, preceive operates synchronously, blocking the caller until a message is available.

15.10 The Implementation Of Ports

Each port consists of a queue to hold messages and two semaphores. One of the
semaphores controls producers, blocking any process that attempts to add messages to a
full port (i.e., one in which the current count of messages fills its quota). The other sema-
phore controls consumers, blocking any process that attempts to remove a message from
an empty port.

Because ports are created at run-time, it is impossible to know the total count of
items that will be enqueued at all ports at any given time. Although each message is
small (one word), the total space required for port queues must be limited to prevent the

-- --

280 High-Level Memory Management and Message Passing Chap. 15

port procedures from using all the free space. To guarantee a limit on the total space
used, the port procedures allocate a fixed number MAXMSGS of queue nodes and share
them among all ports. Initially, these nodes are linked into a free list given by variable
ptfree. Procedure psend takes a node from the free list and adds it to the queue at a speci-
fied port when sending a message; procedure preceive returns a node to the free list after
the message has been received.

In file ports.h, structure pt defines the contents of an entry in the port table, and
structure ptnode defines the contents of a message node. Most of the fields in ptnode are
expected. We will comment on the sequence field ptseq in structure pt later.

/* ports.h - isbadport */

#define NPORTS 30 /* maximum number of ports */

#define MAXMSGS 100 /* maximum messages on all ports*/

#define PTFREE 1 /* port is free */

#define PTLIMBO 2 /* port is being deleted/reset */

#define PTALLOC 3 /* port is allocated */

#define PTEMPTY -1 /* initial semaphore entries */

struct ptnode { /* node on list of message ptrs */

int ptmsg; /* a one-word message */

struct ptnode *ptnext; /* address of next node on list */

};

struct pt { /* entry in the port table */

char ptstate; /* port state (FREE/LIMBO/ALLOC)*/

int ptssem; /* sender semaphore */

int ptrsem; /* receiver semaphore */

int ptmaxcnt; /* max messages to be queued */

int ptct; /* no. of messages in queue */

int ptseq; /* sequence changed at creation */

struct ptnode *pthead; /* list of message pointers */

struct ptnode *pttail; /* tail of message list */

};

extern struct ptnode *ptfree; /* list of free nodes */

extern struct pt ports[]; /* port table */

extern int ptnextp; /* next port to examine when */

/* looking for a free one */

#ifdef MEMMARK

extern MARKER ptmark;

#endif

#define isbadport(portid) ((portid)<0 | | (portid)>=NPORTS)

-- --

Sec. 15.10 The Implementation Of Ports 281

15.10.1 Ports Initialization

Because initialization routines are designed after basic operations have been imple-
mented, we have been discussing them after other routines. In the case of ports, we will
discuss initialization first, because it may make the remaining routines easier to under-
stand. File pinit.c contains the code to initialize ports and the declaration of the port table
as well. Global variable ptnextp gives the index in array ports at which to start when
searching for a free port. Initialization consists of marking each port free and forming
the linked list of free message nodes. Pinit first allocates a block of memory using get-
mem and then moves through it, linking the individual message nodes together.

-- --

282 High-Level Memory Management and Message Passing Chap. 15

/* pinit.c - pinit */

#include <conf.h>

#include <kernel.h>

#include <mem.h>

#include <mark.h>

#include <ports.h>

#ifdef MEMMARK

MARKER ptmark;

#endif

struct ptnode *ptfree; /* list of free queued nodes */

struct pt ports[NPORTS];

int ptnextp;

/*--

* pinit -- initialize all of the ports

*--

*/

SYSCALL pinit()

{
int i;

struct ptnode *next, *prev;

int maxmsgs;

#ifdef MEMMARK

int status;

if ((status=mark(ptmark)) == SYSERR)

panic("pinit - memory marking error");

if (status == 0)

return(OK); /* already marked */

#endif

maxmsgs = MAXMSGS;

if ((ptfree=(struct ptnode *)getmem(maxmsgs*sizeof(struct ptnode)))

== (struct ptnode *)NULL) {
#ifdef MEMMARK

panic("pinit - insufficient memory");

#else

return(SYSERR);

#endif

}
for (i=0 ; i<NPORTS ; i++)

-- --

Sec. 15.10 The Implementation Of Ports 283

ports[i].ptstate = PTFREE;

ptnextp = NPORTS - 1;

/* link up free list of message pointer nodes */

for (prev=next=ptfree ; --maxmsgs > 0 ; prev=next)

prev->ptnext = ++next;

prev->ptnext = (struct ptnode *)NULL;

return(OK);

}

The call to panic also deserves comment because this is its first occurrence. If there is
insufficient space for creating a pool of message nodes, the system will be unable to pro-
vide any message passing services through ports. Port creation and use will be prohibit-
ed. Panic is designed for just such situations; it prints the specified error message and
halts processing. (The exercises suggest alternative ways of handling the problem.)

Observe that with ports, all the memory required for message nodes is obtained us-
ing getmem at initialization time. Contrast this with buffer pools described earlier in this
chapter. There, getmem is called only when a pool is created, not at initialization time.

15.10.2 Port Creation

Port creation consists of allocating an entry in the port table from among those that
are free; procedure pcreate contains the code. After pinit establishes the list of free mes-
sage nodes and fills in the port table, procedure pcreate creates a port and returns its table
index to serve as a port identifier. It takes as an argument the maximum count of out-
standing messages that the port should allow, permitting the caller to determine how
many messages can be enqueued at a port before the sender blocks. Note that, like the
buffer pool routines, the port procedures are self-initializing if memory marking is avail-
able.

-- --

284 High-Level Memory Management and Message Passing Chap. 15

/* pcreate.c - pcreate */

#include <conf.h>

#include <kernel.h>

#include <mark.h>

#include <ports.h>

/*--

* pcreate -- create a port that allows "count" outstanding messages

*--

*/

SYSCALL pcreate(count)

int count;

{
int ps;

int i, p;

struct pt *ptptr;

int mkval;

if (count < 0 | | count > MAXMSGS)

return(SYSERR);

disable(ps);

#ifdef MEMMARK

if (unmarked(ptmark))

pinit();

#endif

for (i=0 ; i<NPORTS ; i++) {
if ((p=ptnextp--) <= 0)

ptnextp = NPORTS - 1;

if ((ptptr= &ports[p])->ptstate == PTFREE) {
ptptr->ptstate = PTALLOC;

ptptr->ptssem = screate(count);

ptptr->ptrsem = screate(0);

ptptr->pthead = ptptr->pttail

= (struct ptnode *)NULL;

ptptr->ptseq++;

ptptr->ptmaxcnt = count;

ptptr->ptct = 0;

restore(ps);

return(p);

}
}
restore(ps);

return(SYSERR);

}

-- --

Sec. 15.10 The Implementation Of Ports 285

The basic operations on ports, sending and receiving messages, are handled by rou-
tines psend and preceive. They each require the caller to specify the port on which the
operation is to be performed by passing the port identifier as an argument.

15.10.3 Sending To Ports

Procedure psend adds a message to those that are waiting at the port. It waits for space in
the port, enqueues the message given by its argument, signals the receiver semaphore to
indicate another message is available, and returns.

-- --

286 High-Level Memory Management and Message Passing Chap. 15

/* psend.c - psend */

#include <conf.h>

#include <kernel.h>

#include <mark.h>

#include <ports.h>

/*--

* psend -- send a message to a port by enqueuing it

*--

*/

SYSCALL psend(portid, msg)

int portid;

int msg;

{
int ps;

struct pt *ptptr;

int seq;

struct ptnode *freenode;

disable(ps);

if (isbadport(portid) | |
#ifdef MEMMARK

unmarked(ptmark) | |
#endif

(ptptr=&ports[portid])->ptstate != PTALLOC) {
restore(ps);

return(SYSERR);

}

/* wait for space and verify that the port is still allocated */

seq = ptptr->ptseq;

ptptr->ptct++;

if (wait(ptptr->ptssem) == SYSERR

| | ptptr->ptstate != PTALLOC

| | ptptr->ptseq != seq) {
restore(ps);

return(SYSERR);

}
if (ptfree == (struct ptnode *)NULL) {

kprintf("psend - out of nodes");

xdone();

-- --

Sec. 15.10 The Implementation Of Ports 287

}
freenode = ptfree;

ptfree = freenode->ptnext;

freenode->ptnext = (struct ptnode *)NULL;

freenode->ptmsg = msg;

if (ptptr->pttail == (struct ptnode *)NULL) /* empty queue */

ptptr->pttail = ptptr->pthead = freenode;

else {
(ptptr->pttail)->ptnext = freenode;

ptptr->pttail = freenode;

}
signal(ptptr->ptrsem);

restore(ps);

return(OK);

}

The initial code in psend merely verifies that the argument is valid. What happens
next is similar to the implementation of windows. Psend waits on the "sender" sema-
phore. The call returns immediately if the port is not full, but it delays if the number of
messages already enqueued equals the maximum allowed. Psend records the value of
ptseq before the call to wait, and then verifies that it remained the same after the call.
Similar to closing and opening windows, ports may be deleted (and even recreated) while
processes remain enqueued waiting to send to them. When this happens, the port se-
quence number changes and the waiting processes are resumed. So waiting processes
must verify that the wait did not terminate because the port was deleted. If it did, and the
sequence number changed, psend reports an error to its caller.

Psend enqueues messages in FIFO order. It relies on pttail to point to the last node
if the queue is nonempty, and it leaves pttail pointing to the new node after adding the
node to the list. It signals semaphore ptrsem once the new message has been added to the
queue, allowing a receiver to consume the message. The invariant being maintained is:

Semaphore ptrsem has nonnegative count n if n messages are waiting
in the port; it has negative count −n if n processes are waiting for mes-
sages.

In our design, running out of message nodes is a catastrophe from which the system
cannot recover. It means that the arbitrary limit on message nodes, set to prevent ports
from using all the free memory, is insufficient. Perhaps the programs using ports are
operating incorrectly. Perhaps, through no fault of the user, the system cannot honor a
valid request; there is no way to know. Under such circumstances, it is often better to an-
nounce failure and stop rather than attempt to go on. Consequently, psend calls panic in
case there are no more message nodes available.

-- --

288 High-Level Memory Management and Message Passing Chap. 15

15.10.4 Receiving From Ports

Procedure preceive implements the basic consumer operation. It removes a message
from a port and returns it to the caller.

/* preceive.c - preceive */

#include <conf.h>

#include <kernel.h>

#include <mark.h>

#include <ports.h>

/*--

* preceive -- receive a message from a port, blocking if port empty

*--

*/

SYSCALL preceive(portid)

int portid;

{
int ps;

struct pt *ptptr;

int seq;

int msg;

struct ptnode *nxtnode;

disable(ps);

if (isbadport(portid) | |
#ifdef MEMMARK

unmarked(ptmark) | |
#endif

(ptptr=&ports[portid])->ptstate != PTALLOC) {
restore(ps);

return(SYSERR);

}

/* wait for a msg. and verify that the port is still allocated */

seq = ptptr->ptseq;

if (wait(ptptr->ptrsem) == SYSERR

| | ptptr->ptstate != PTALLOC

| | ptptr->ptseq != seq) {
restore(ps);

return(SYSERR);

-- --

Sec. 15.10 The Implementation Of Ports 289

}

/* dequeue the first message that is waiting in the port */

nxtnode = ptptr->pthead;

msg = nxtnode->ptmsg;

if (ptptr->pthead == ptptr->pttail) /* delete the last item */

ptptr->pthead = ptptr->pttail = (struct ptnode *)NULL;

else

ptptr->pthead = nxtnode->ptnext;

nxtnode->ptnext = ptfree; /* return to free list */

ptfree = nxtnode;

ptptr->ptct--;

signal(ptptr->ptrsem);

restore(ps);

return(msg);

}

Preceive waits until a message is available, verifies that the port was not deleted, and de-
queues the message node. It records the message in local variable msg before returning
the message node to the free list.

15.11 Other Operations On Ports

It is sometimes useful to determine the number of messages in a port, to delete a
port, or to reset it. In the latter two cases, the system must dispose of waiting messages,
return message nodes to the free list, and permit waiting processes to continue execution.

Counting the number of messages in a port appears to be trivial. The code is indeed
trivial:

-- --

290 High-Level Memory Management and Message Passing Chap. 15

/* pcount.c - pcount */

#include <conf.h>

#include <kernel.h>

#include <mark.h>

#include <ports.h>

/*--

* pcount -- return the count of current messages in a port

*--

*/

SYSCALL pcount(portid)

int portid;

{
int scnt;

int count;

int ps;

struct pt *ptptr;

disable(ps);

if (isbadport(portid) | |
#ifdef MEMMARK

unmarked(ptmark) | |
#endif

(ptptr= &ports[portid])->ptstate != PTALLOC) {
restore(ps);

return(SYSERR);

}
count = ptptr->ptct;

restore(ps);

return(count);

}

Should the message count reflect the actual number of message nodes in the port queue,
or should it take into account processes that are waiting to send or receive messages as
well? A process waiting on the port’s receiver semaphore ptrsem is a guaranteed produc-
er of a message which will eventually end up on the port’s message queue. If a process
is interested in determining arriving messages in transit as well as actual messages in the
queue, waiting producers should be taken into account in determining the count of mes-
sages. Conversely, a process waiting on the port’s sender semaphore ptrsem is a
guaranteed consumer of a message. If a process wishes to acknowledge that some mes-
sages are already ‘‘spoken for,’’ waiting consumers should be taken into account too.
For these reasons, the ptct component of a port table entry is incremented at each call to
psend − reflecting a potential production of a message- and is decremented at each call to

-- --

Sec. 15.11 Other Operations On Ports 291

preceive − reflecting a potential consumption. (The exercises consider other ways of
computing ptct.)

When deleting or resetting a port, how should the port mechanism dispose of wait-
ing messages? It could choose to throw them away, or it might return them to the
processes that sent them. Often, the user can describe a more meaningful disposition, so
the design presented here allows the user to specify disposition. Procedures pdelete and
preset perform port deletion and reset operations. Both take as an argument a function
that will be called to dispose of each waiting message. The code is found in files
pdelete.c and preset.c:

/* pdelete.c - pdelete */

#include <conf.h>

#include <kernel.h>

#include <mark.h>

#include <ports.h>

/*--

* pdelete -- delete a port, freeing waiting processes and messages

*--

*/

SYSCALL pdelete(portid, dispose)

int portid;

int (*dispose)();

{
int ps;

struct pt *ptptr;

disable(ps);

if (isbadport(portid) | |
#ifdef MEMMARK

unmarked(ptmark) | |
#endif

(ptptr=&ports[portid])->ptstate != PTALLOC) {
restore(ps);

return(SYSERR);

}
_ptclear(ptptr, PTFREE, dispose);

restore(ps);

return(OK);

}

-- --

292 High-Level Memory Management and Message Passing Chap. 15

/* preset.c - preset */

#include <conf.h>

#include <kernel.h>

#include <mark.h>

#include <ports.h>

/*--

* preset -- reset a port, freeing waiting processes and messages

*--

*/

SYSCALL preset(portid, dispose)

int portid;

int (*dispose)();

{
int ps;

struct pt *ptptr;

disable(ps);

if (isbadport(portid) | |
#ifdef MEMMARK

unmarked(ptmark) | |
#endif

(ptptr=&ports[portid])->ptstate != PTALLOC) {
restore(ps);

return(SYSERR);

}
_ptclear(ptptr, PTALLOC, dispose);

restore(ps);

return(OK);

}

Both pdelete and preset verify that their arguments are correct and then call _ptclear
to perform the work of clearing messages and waiting processes.

_Ptclear places the port in a "limbo" state while clearing it. The limbo state
guarantees that no other processes can use the port — procedures like psend and preceive
will refuse to operate on a port that is not allocated, and pcreate will not allocate the port
unless it is free. Thus, _ptclear can allow rescheduling while it clears the port.

Before declaring a port eligible for use again, _ptclear calls dispose repeatedly,
passing it each waiting message. Finally, after all messages have been removed, _ptclear
deletes or resets the semaphores as specified by its second argument. Before disposing of
messages, _ptclear increments the port sequence number so that waiting processes can
tell that the port has changed when they regain control of the CPU.

-- --

Sec. 15.11 Other Operations On Ports 293

/* ptclear.c - _ptclear */

#include <conf.h>

#include <kernel.h>

#include <mark.h>

#include <ports.h>

/*--

* _ptclear -- used by pdelete and preset to clear a port

*--

*/

_ptclear(ptptr, newstate, dispose)

struct pt *ptptr;

int newstate;

int (*dispose)();

{
struct ptnode *p;

/* put port in limbo until done freeing processes */

ptptr->ptstate = PTLIMBO;

ptptr->ptseq++;

if ((p=ptptr->pthead) != (struct ptnode *)NULL) {
for(; p != (struct ptnode *)NULL ; p=p->ptnext)

(*dispose)(p->ptmsg);

(ptptr->pttail)->ptnext = ptfree;

ptfree = ptptr->pthead;

}
if (newstate == PTALLOC) {

ptptr->pttail = ptptr->pthead = (struct ptnode *)NULL;

sreset(ptptr->ptssem, ptptr->ptmaxcnt);

sreset(ptptr->ptrsem, 0);

ptptr->ptct = 0;

} else {
sdelete(ptptr->ptssem);

sdelete(ptptr->ptrsem);

}
ptptr->ptstate = newstate;

}

-- --

294 High-Level Memory Management and Message Passing Chap. 15

15.12 Summary

High-level memory management and message passing primitives are needed to
build disk driver and network software. The memory manager must prevent global ex-
haustion, and the message passing facility must provide buffered rendezvous points for
message exchange. This chapter introduced two sets of primitives that satisfy these
needs. Instead of building these primitives into the device software, we have chosen to
design and build them separately. Such separation makes the primitives available to oth-
er system software and to user programs. It also makes them easier to test.

The high-level memory manager consists of buffer pool routines. Buffer pools per-
mit memory to be partitioned, such that the number of buffers in a given pool is fixed.
Once a pool has been created, processes can allocate and deallocate buffers from the pool
without affecting other free memory. A process that attempts to allocate a buffer from an
empty pool is blocked until another process returns a buffer to the pool.

The high level message passing mechanism, called communication ports, permits
processes to exchange messages efficiently. Each port consists of a fixed length queue of
messages. The basic operations psend and preceive deposit a message at the tail of the
queue and extract a message from the head of the queue. Processes that attempt to re-
ceive from an empty port are blocked until a message arrives, and processes that attempt
to send to a full port are blocked until space becomes available.

Both buffer pools and communication ports use another mechanism introduced in
this chapter, namely memory marking. Memory marking provides an efficient way to
determine whether a memory location has been ‘‘marked’’ since system startup or to
‘‘mark’’ a given location. As demonstrated by the buffer pool and port routines, memory
marking can be used to make a set of procedures self-initializing.

FOR FURTHER STUDY

Calingaert [1982] discusses allocation from a pool as well as alternative methods of
recovering storage. Knuth [1968] describes in detail two such recovery methods: the
‘‘buddy system’’ and garbage collection. Memory marking is akin to the constant-time
array initialization problem in Exercise 2.12 of Aho et. al. [1974].

EXERCISES

15.1 The chief advantage of combining procedures into a single file is that they can share static
data structures. Consider, for example, the memory marking routines. Recode them so
that marks is protected from access except through mark and unmark.

15.2 Can you envision an alternative to the three state marking scheme described above?

-- --

Exercises 295

15.3 Design a new getmem that subsumes getbuf. Hint: allow the user to suballocate from a
previously allocated block of memory.

15.4 Explain how to modify getbuf so it does not allocate buffers until they are needed, even
though it still limits the number of buffers that can be simultaneously allocated from a
pool at a given time.

15.5 Why is freebuf more efficient than freemem?

15.6 The implementation of memory marking described here does not provide adequate mutual
exclusion for two or more processes that attempt to access self-initializing routines con-
currently. Redesign the primitives by introducing a third primitive, marking, so a process
can declare that a cell is ‘‘being marked’’ during module initialization. Have concurrent
calls to mark and unmarked block until the caller declares that the cell is ‘‘marked.’’

15.7 Instead of putting the pool id at the beginning of the buffer, redesign the buffer pool
mechanism to put the id at the end of the buffer. Explain why this may result in less effi-
ciency.

15.8 Consider the primitives send—receive and psend—preceive. Design a single message
passing scheme that encompasses both.

15.9 An important distinction is made between statically allocated and dynamically allocated
resources. For example, ports are dynamically allocated while inter-process message slots
are statically allocated. What is the key problem with dynamic allocation in a multi-
process environment?

15.10 Change the message node allocation scheme so that a semaphore controls nodes on the
free list. Have psend wait for a free node if none exists. What potential problems, if any,
does the new scheme introduce?

15.11 Panic is used for conditions like internal inconsistency or potential deadlock. Often the
conditions causing a panic are irreproducible, so their cause is difficult to pinpoint. Dis-
cuss what you might do to trace the cause of the panic in psend.

15.12 As alternatives to the panic in psend, consider allocating more nodes or retrying the opera-
tion. What are the liabilities of each?

15.13 Rewrite psend and preceive to return a special value when the port is deleted while they
are waiting.

15.14 Modify the routines in previous chapters that allocate, use, and delete objects so they use
sequence numbers to detect deletion as the window and ports routines do.

15.15 Psend and preceive cannot transmit a message with value equal to SYSERR because pre-
ceive cannot distinguish between a message with that value and an error. Redesign them
to transmit any value.

15.16 Why put a restriction on the number of messages per port?

15.17 Rewrite the tty input code to use a buffer pool scheme for allocating small input buffers
for all tty input operations, generalizing the fixed input buffer size in the tty structure.

15.18 Show that the actual number of message nodes in the queue for a port is

ptmaxcnt-scount(ptssem)+scount(ptrsem)-ptct.

The variables above all come from structure pt.

