
9

Interrupt Processing

The hardware interrupt is a powerful mechanism that provides support for many of
the services the operating system supplies. As described in Chapter 2, a device requests
interrupt service by sending the CPU a signal on its interrupt line. Before executing an
instruction, the CPU checks the interrupt line, and ‘‘calls’’ a procedure to handle the in-
terrupt if it finds one pending. When the called routine ‘‘returns,’’ control passes back to
the process that was executing, as if nothing had happened. Without an interrupt
mechanism, the operating system could not guarantee that it would ever regain control
once it started executing a user process.

Before looking at devices in detail to see why they interrupt and how the system
responds, we will explore in this chapter the routines PC-Xinu uses to field interrupts and
pass control to the appropriate routine. Later chapters explain more about the clock and
keyboard devices, showing how interrupt processing routines are designed.

9.1 Dispatching Interrupts

We said that the hardware calls the interrupt handler when it finds an interrupt pend-
ing. The terms call and return have special meaning when applied to interrupts. First,
there is no procedure call instruction in the interrupted program − the processor simulates
a call to the appropriate interrupt routine ‘‘in between’’ the execution of normal instruc-
tions in the user’s program. Second, the processor automatically saves the current
FLAGS and CS:IP by pushing them on the stack when an interrupt occurs (the interrupt
routine must save and restore any other registers that it needs to use). Third, the interrupt
routine must use a special return instruction to pop the old CS:IP and FLAGS off the
stack in a single step.

Because interrupt routines manipulate hardware registers and use special call/return
sequences, they cannot usually be written in high-level languages like C. The temptation
is to write all the code related to interrupt processing, a significant portion of the operat-

133

-- --

134 Interrupt Processing Chap. 9

ing system, in assembly language. But writing in a low-level language makes the
software difficult to understand or modify. So, to keep the system code as readable as
possible, our design employs a two-level strategy for processing interrupts. Interrupts
branch to a small, low-level interrupt dispatch routine that is written in assembly
language. The dispatcher handles tasks like saving and restoring registers, identifying
the interrupting device, and returning from the interrupt when it has been processed.
However, it does little else − it calls high-level routines to do the real work of interrupt
processing, passing them enough information to identify the interrupting device.

PC-Xinu handles interrupts from the clock, the keyboard, and pseudo-devices such
as Ctrl-Break described in Chapter 2. It also handles exception interrupts. This chapter
concentrates on the dispatcher, deferring a discussion of most of the actual PC-Xinu in-
terrupt service routines until later chapters.

9.2 The Interrupt Dispatcher

Devices connect to the computer system through hardware mechanisms called con-
trollers. Controllers, which may be as simple as a chip or as complicated as a micropro-
cessor system, usually reside on boards plugged into the system bus. They have
hardware that translates between digital data and the signals necessary to control and
communicate with peripheral devices like keyboards and disks, as described in Chapter
2.

Some devices, such as terminals, allow simultaneous transfer of data in both direc-
tions and consist of two independently controlled devices, one for input and one for out-
put. These devices often employ one controller for both input and output. The controller
may use separate vectors for input and output interrupts or (as is the the case for the PC
communications devices) one vector for both input and output interrupts. In the latter
case, it may be necessary for the software to distinguish between an input interrupt and
output interrupt by interrogating the controller itself, but at the lowest level, the system
must operate as if the input and output devices were independent.

9.2.1 The Intmap table

PC-Xinu uses an interrupt table, called intmap, which has one entry for each device
requiring interrupt service by the operating system. An intmap entry contains informa-
tion about the device together with a CALL instruction to the common interrupt dispatch-
er intcom. The interrupt vector for a device points to the CALL instruction in its intmap
entry, so that when an interrupt occurs, the processor executes the CALL instruction
which immediately executes the code in the dispatcher. Figure 9.1 shows the logical or-
ganization.

If all interrupts call the same dispatch routine, how does the dispatcher know which
high-level interrupt routine to call? Remember that the CALL instruction pushes its re-
turn address on the stack just before branching to the called code. When the processor
executes the CALL instruction in the intmap table, the address of the byte following the

-- --

Sec. 9.2 The Interrupt Dispatcher 135

instruction is left on the stack. The intcom code can use this address as a pointer to the
intmap entry for the device, allowing access to information, including the address of the
device’s high-level interrupt routine and other device-specific parameters.

0

1

CLKVEC

KBDVEC

CBRKVEC

call intcom

CBRK
data

call intcom

KBD BIOS
ISR addr

KBD
data

call intcom

CLK BIOS
ISR addr

CLK
data

code for
intcom

KBD BIOS
ISR

CLK BIOS
ISR

LOW
ADDRESSES

(Interrupt Vectors)

INTERMEDIATE
ADDRESSES

(Xinu text segment)

HIGH
ADDRESSES

(ROM BIOS routines)

Figure 9.1 Interrupt vectors pointing to the intmap table.

A look at the code will clarify the details. The interrupt dispatch table intmap is de-
fined in file io.h.

-- --

136 Interrupt Processing Chap. 9

/* io.h - fgetc, fputc, getchar, isbaddev, putchar */

#define INTVECI inint /* input interrupt dispatch routine */

#define INTVECO outint /* output interrupt dispatch routine */

extern int INTVECI();

extern int INTVECO();

#define NMAPS 0x20 /* number of intmap entries */

struct intmap { /* device-to-interrupt routine mapping */

char ivec; /* interrupt number */

char callinst; /* the call instruction */

word intcom; /* common interrupt code */

word oldisr_off; /* old int. service routine offset */

word oldisr_seg; /* old int. service routine segment */

int (*newisr)(); /* pointer to the new int. ser. routine */

word mdevno; /* minor device number */

word iflag; /* if nonzero, call the old isr */

};

/*

* NOTE: The intmap structure takes a total of 7 words or 14 bytes

* per record.

*/

extern struct intmap far *sys_imp; /* pointer to intmap table */

extern int nmaps; /* number of active intmap entries */

#define isbaddev(f) ((f)<0 | | (f)>=NDEVS)

/* In-line I/O procedures */

#define getchar() getc(CONSOLE)

#define putchar(ch) putc(CONSOLE,(ch))

#define fgetc(unit) getc((unit))

#define fputc(unit,ch) putc((unit),(ch))

extern int _doprnt(); /* output formatter */

Each entry in intmap corresponds to one device. The interrupt type (from whence the in-
terrupt comes) is stored at system initialization in the ivec field. Following this are three
bytes for the CALL instruction. The segment : offset address of the previous interrupt
service routine installed in the vector is saved in the oldisr entry. This address and the in-
terrupt type in ivec are used to restore the interrupt vector to its previous value upon ter-
mination of PC-Xinu.

-- --

Sec. 9.2 The Interrupt Dispatcher 137

The newisr entry is a pointer (CS offset) to the PC-Xinu interrupt service routine
code which is called by intcom when the device interrupt occurs. When called, newisr is
passed the minor device number mdevno from the intmap table.

The intmap table itself is defined in intmap.asm:

; intmap.asm -

; low-level interrupt transfer table and dispatcher

include dos.asm

tblsize equ 20h ; define max size of intmap table

stksize equ 100h ; max size of system stack

dseg

public _sys_imp

intstack db stksize dup (?) ; interrupt stack

topstack label byte

_sys_imp dd far ptr intmap

endds

pseg

public pcxflag, sssave, spsave

pcxflag dw 1 ; zero when rescheduling disabled

spsave dw ? ; saved stack pointer register

sssave dw ? ; saved stack segment register

;---

; intmap -- interrupt dispatch table

;---

intmap label byte

rept tblsize

db ? ; ivec - interrupt vector number

call intcom

dd ? ; oldisr - old isr from bios (s:o)

dw -1 ; newisr - new isr code address

dw ? ; mdevno - minor device number

dw ? ; iflag - interrupt flag

-- --

138 Interrupt Processing Chap. 9

endm

ASSUME DS:NOTHING

;---

; intcom -- common interrupt dispatcher

;---

; This procedure is interrupt handling code that is common to all

; interrupt service routines.

intcom proc near

push bp

mov bp,sp

push ax ; push registers

push bx

mov bx,[bp+2] ; get pointer to intmap data

mov ax,cs:[bx+8] ; get interrupt flag

or al,al ; zero?

je short nobios ; yes, skip the call to the BIOS

pushf ; push flags to simulate interrupt

call cs:dword ptr[bx] ; call BIOS ISR

cli ; be sure interrupts are back off

nobios:

push cx ; save rest of registers

push dx

push si

push di

push ds

push es

mov cs:sssave,ss ; save stack environment

mov cs:spsave,sp

mov cx,cs ; get code segment

; bp+6 points to code segment where interrupt occurred

cmp cx,[bp+6] ; check if we own interrupt

jnz short newstack

; time to do our ISR, since the stack and data segments are OK

push cs:word ptr[bx+6] ; pass minor dev. no.

call cs:word ptr[bx+4] ; call C ISR (saves si, di)

add sp,2 ; deallocate parm. (C convention)

jmp short popregs

newstack:

; now set up temporary stack in DGROUP and do our ISR

mov ax,DGROUP

mov ds,ax ; set ds to DGROUP

-- --

Sec. 9.2 The Interrupt Dispatcher 139

ASSUME DS:DGROUP

mov ss,ax ; set up temporary stack in DGROUP

mov sp,offset topstack

xor ax,ax ; clear pcxflag to prevent resched

xchg ax,cs:pcxflag

push ax ; save for later

push cs:word ptr[bx+6] ; pass minor dev. no.

call cs:word ptr[bx+4] ; call our routine (saves si, di)

add sp,2 ; deallocate parm. (C convention)

pop cs:pcxflag ; restore pcxflag

mov ss,cs:sssave ; restore old stack

mov sp,cs:spsave

ASSUME DS:NOTHING

popregs:

pop es ; restore all registers

pop ds

pop di

pop si

pop dx

pop cx

pop bx

pop ax

pop bp

add sp,2 ; remove pointer to intmap area

iret

intcom endp

endps

end

The REPT directive in the definition of intmap is a convenient way to allocate a
number of identical entries without having to code each one individually. In this case,
tblsize is 20H, which means that there will be 20H entries in the intmap table.

The intmap table is in the code segment, whose data is generally inaccessible by C
programs. Since intmap entries must be filled in by high-level C initialization routines,
intmap.asm defines a public data segment variable sys_imp containing the
segment : offset pointer to intmap. This variable is available to C programs as a far
pointer into the intmap data. Remember that the underscore at the beginning of the
sys_imp name allows C programs to access the variable.

-- --

140 Interrupt Processing Chap. 9

9.2.2 Implementation of the Interrupt Dispatcher

Intcom begins by pushing registers BP, AX, and BX on the stack. Since the
dispatcher itself is an interrupt service routine and these registers are used for interrupt
dispatch activities, it is necessary that they are saved before they are used. They will be
popped off the stack prior to returning to the interrupted process.

Recall that upon entry to the interrupt dispatcher, the CS offset to the device’s
intmap entry (actually, to the oldisr address) is on the stack as a result of the CALL in-
struction. The BP register, which references the stack frame, is used to retrieve this
pointer and to save it in the BX register. This pointer will be used to access all the com-
ponents of the intmap entry. Before calling the C interrupt service routine, the remaining
registers DX, SI, DI, DS, and ES are pushed on the stack, and the current SS:SP stack en-
vironment is saved in the segment : offset pair sssave:spsave.

The intstack array in intmap.asm deserves special comment. Interrupts which occur
during a BIOS call may use data and stack segments that differ from those used by PC-
Xinu. For PC-Xinu to handle such interrupts, the C interrupt service routine must be
called with stack and data segments that agree with the memory layout given in Chapters
2 and 8. If the interrupt came from outside the PC-Xinu environment, intcom must set up
a local stack prior to calling the C interrupt service routine. After the local stack has
been used, intcom restores the SS:SP stack environment from the saved variables
sssave : spsave.

The code illustrates another feature of 8088 assembly language. Data references by
default use the DS segment register, but some intmap data entries reside in the code seg-
ment. To reference the code segment variables pcxflag, sssave, and spsave, a segment
override is used. In assembly language, this is expressed using the prefix ‘‘CS:’’ on the
instruction data. Since C programs refer to variables in the data segment by default, code
segment variables ordinarily are accessible only through assembly language.

9.2.3 Deferred Rescheduling

A routine is said to be reentrant if simultaneous calls from more than one process
can be executing code in the routine at the same time. Reentrant code abounds in operat-
ing systems that support multiple processes (resched is one of many examples in PC-
Xinu). Routines that are reentrant normally use local variables belonging to the stack
space of the user process; reference to any global variables is usually controlled by
bracketing access to them with calls to disable and enable interrupts.

BIOS services are not reentrant, and since BIOS services typically enable interrupts,
they cannot be trusted by themselves to protect their global variables from access by mul-
tiple processes when interrupts occur. PC-Xinu uses a single routine, resched, to switch
from one process to another, and the only way resched can be called during BIOS ser-
vices is through an interrupt (for example, from the clock or keyboard). When a BIOS
routine is executing, it sets up its own data (and perhaps stack) segment to access its glo-
bal variables. As described in the previous section, intcom code sets up a local stack in
the PC-Xinu environment to handle interrupts which occur during BIOS services. These
interrupts must not reschedule, since rescheduling can result in another call to the BIOS
routine.

-- --

Sec. 9.2 The Interrupt Dispatcher 141

The pcxflag variable in intmap.asm serves as a gate to defer rescheduling. When
pcxflag is reset to 0, PC-Xinu rescheduling is disabled, thereby preventing context
switching and avoiding reentrant access by multiple processes. When pcxflag is set to 1,
normal rescheduling by PC-Xinu is enabled. The code in the interrupt dispatcher shows
that pcxflag is reset to 0 when the local stack is used to service BIOS interrupts. This is
insurance against rescheduling by interrupts during BIOS activities which could wreak
havoc in non-reentrant routines.

9.2.4 To BIOS or Not to BIOS

An intmap table entry for a device contains the segment : offset address of the old
interrupt service routine which was in the device vector prior to PC-Xinu initialization.
In most cases, this interrupt service routine is called by the interrupt dispatcher just be-
fore calling the PC-Xinu service routine. For example, keyboard interrupts must be pro-
cessed by the BIOS before they are serviced by PC-Xinu. There are interrupts, however,
which should not be handled by the old ISR. An example is Ctrl-Break, the type 1BH in-
terrupt, which is invoked upon receipt of the Ctrl-Break key sequence. If the old ISR
were to handle this first, it could terminate PC-Xinu and return control to MS-DOS,
without giving PC-Xinu a chance to restore the interrupt vectors from the intmap table,
an important program termination activity.

For this reason, intmap entries have an iflag field which, when nonzero, causes the
interrupt dispatcher to call the old ISR before proceeding to the PC-Xinu handler. The
value of this flag for each device is determined by the PC-Xinu configuration, which is
discussed in Chapter 11.

9.3 Process Control Of Deferred Rescheduling

Pcxflag is reset by the interrupt dispatcher to defer rescheduling when the local
stack is being used for interrupt processing. But there are occasions when a process may
wish to defer rescheduling while leaving interrupts enabled. As an example, positioning
the cursor on the screen and displaying a character at the current cursor position are
separate BIOS calls: If a context switch occurs between these calls, another process may
move the cursor before the current process can display the character. To make these ac-
tivities essentially indivisible, a process calls xdisable to defer rescheduling. Reschedul-
ing is deferred until the process calls xrestore.

The macros xdisable and xrestore defined in kernel.h are analogous to the disable
and restore macros, except that they save and restore the pcxflag value. They expand to
calls to the two assembly language service routines sys_xdisabl and sys_xrestor, which
are similar to sys_disabl and sys_restor discussed in Chapter 5.

-- --

142 Interrupt Processing Chap. 9

; xeidi.asm - _sys_xdisabl, _sys_xrestor, _sys_pcxget, _sys_getstk

include dos.asm ; segment macros

dseg

; null data segment

endds

pseg

public _sys_xdisabl, _sys_xrestor, _sys_pcxget, _sys_getstk

extrn pcxflag:word

extrn sssave:word

extrn spsave:word

;---

; _sys_xdisabl -- return pcxflag & disable context switching

;---

; int sys_xdisabl()

_sys_xdisabl proc near

pushf

cli ; disable interrupts

xor ax,ax

xchg ax,cs:pcxflag

popf

ret

_sys_xdisabl endp

;---

; _sys_xrestor -- restore pcxflag

;---

; sys_xrestor(ps)

; int ps;

_sys_xrestor proc near

push bp

mov bp,sp ; C calling convention

pushf

cli ; disable interrupts

mov ax,[bp+4]; ; get passed flags word

mov cs:pcxflag,ax ; reset pcxflag to passed value

popf

pop bp

ret

_sys_xrestor endp

-- --

Sec. 9.3 Process Control Of Deferred Rescheduling 143

;---

; _sys_pcxget -- get the current value of pcxflag

;---

; int sys_pcxget()

_sys_pcxget proc near

pushf

cli ; disable interrupts

mov ax,cs:pcxflag

popf

ret

_sys_pcxget endp

;---

; sys_getstk -- get the stack parameters for panic printing

;---

; sys_getstk(sssp,spsp)

; int *sssp,*spsp

_sys_getstk proc near

ASSUME DS:DGROUP

push bp

mov bp,sp

mov bx,[bp+4]

mov ax,cs:sssave

mov [bx],ax

mov bx,[bp+6]

mov ax,cs:spsave

mov [bx],ax

pop bp

ret

_sys_getstk endp

endps

end

If rescheduling is deferred and the current process calls resched (indirectly through
send or signal, for example), resched returns harmlessly. However, if a process changes
its state and calls resched (indirectly through receive or wait, for example) with
rescheduling deferred, the system will be left in an impossible state. Consequently, de-
ferred rescheduling should follow the simple rule:

-- --

144 Interrupt Processing Chap. 9

A process executing with rescheduling deferred can only call pro-
cedures that leave the process in the current state.

BIOS calls cannot change the state of a process, so they are safe to call with rescheduling
deferred.

9.4 The Rules For Interrupt Processing

Because interrupt routines examine and modify global data structures like I/O
buffers, these routines must be designed to prevent other processes from interfering with
them. Generally, noninterference is guaranteed by making the interrupt routines uninter-
ruptable. For example, PC-Xinu disables interrupts by calling an assembly language rou-
tine to clear the interrupt flag in the FLAGS register. Interrupts remain disabled even if
an interrupt routine calls other procedures. When the high-level interrupt procedure re-
turns, control passes back to the interrupt dispatcher, which restores the FLAGS register
and returns to the place at which processing was originally interrupted. Only after the
dispatcher returns are interrupts enabled again.

Interrupt routines may also enable interrupts by calling resched, if it switches to a
process that has interrupts enabled. The PC-Xinu clock interrupt routine, for example,
calls resched directly, and the keyboard interrupt routine calls send to indicate that a
character is available, indirectly calling resched. In each case, when the call reaches
resched, it might allow a process to execute that had interrupts enabled. So, shared data
structures must be left in a valid state before calling any routines that switch context. To
sum up:

Interrupts will be disabled when the dispatcher calls a high-level inter-
rupt routine; the high-level routine must be designed to keep further in-
terrupts disabled until it completes changes to global data structures.

There are several other issues to consider when building interrupt routines. For one,
interrupt routines cannot keep interrupts disabled too long. If they do, devices will fail to
perform correctly. For example, if the processor does not accept a character from a serial
port before another arrives, data will be lost. So, interrupt routines must be designed to
enable further interrupts as quickly as possible.

Another constraint arises because interrupt code is executed by whichever process
happens to be running when the interrupt occurs. In particular, the interrupt routines
must be designed so they work correctly even if executed by the null process. Recall that
resched blindly assumes at least one process remains ready to run, so the null process
must always be current or ready. The most important consequence is:

-- --

Sec. 9.4 The Rules For Interrupt Processing 145

Interrupt routines can only call procedures that leave the executing
process in the current or ready states.

So, interrupt routines may use primitives like send or signal, but they may not use primi-
tives like wait.

9.5 Rescheduling While Processing An Interrupt

Should interrupt routines be allowed to reschedule? We already stated that interrupt
routines cannot explicitly enable further interrupts while processing an interrupt, and that
they must leave global data structures in a valid state before rescheduling. It might seem
that they should not be allowed to reschedule either, because switching to a process that
had interrupts enabled would start a sequence of interrupts piling up until the stack over-
flowed. Rescheduling is important, however, because it provides the only way that inter-
rupt routines can affect the running process. We must convince ourselves that reschedul-
ing from an interrupt is safe as long as global data structures are valid.

To understand why rescheduling is safe, consider the series of events leading to a
call of resched from an interrupt handler. Suppose a process P was running with inter-
rupts enabled when the interrupt occurred. The hardware uses P’s stack to save the re-
gisters and continues to let process P run the interrupt dispatcher. Because the interrupt
mechanism disables interrupts, P executes the dispatch routine with interrupts disabled.
Interrupts remained disabled when the dispatcher calls the high-level interrupt routine.
Suppose now that the high-level interrupt routine calls resched which switches to another
process, say Q. If Q happens to enable interrupts (e.g., by returning from a system call),
another interrupt may occur. What prevents an infinite loop where unfinished interrupts
pile up until the run-time stack overflows with interrupt procedure calls? Recall that
each process has its own stack. Process P had one interrupt on its stack when it was
stopped by the context switch. The new interrupt occurs while the processor is using Q’s
stack. Before another interrupt can pile up on P’s stack, it must regain control of the
CPU and enable interrupts. But P was running with interrupts disabled when it called the
scheduler and context switch. The context switch saved P with interrupts disabled, so
when it eventually switches back to P, it will restore the FLAGS register, and P will con-
tinue execution with interrupts disabled.

Interrupts remain disabled as resched returns to the high level interrupt routine and
as the high-level interrupt routine returns to the interrupt dispatcher. Interrupts only be-
come enabled again when the dispatcher returns to the spot at which the original interrupt
occurred. So, interrupts cannot occur while process P is executing interrupt code (even
though they can occur to another process while P is not executing). Only a finite number
of processes exist at any time and each, in turn, can be processing at most one interrupt.
Looking at this a different way, we can say that:

-- --

146 Interrupt Processing Chap. 9

Rescheduling during interrupt processing is safe provided that (1)
interrupt routines leave global data in a valid state before
rescheduling, and (2) no procedure enables interrupts unless it
disabled them.

If you recall, you will see that we have used this rule in all the procedures built so far: a
procedure that disables interrupts upon entry always restores them before returning to its
caller; no routine ever enables interrupts explicitly. Because interrupts are disabled upon
entry to the interrupt dispatcher, they are restored when it returns. The only exception to
our rule about disabling and restoring interrupts is found in the initialization procedure
which enables interrupts at system startup.

9.6 PC Interrupt Vectors

The PC interrupt vectors used by PC-Xinu can be classified into two categories: ex-
ception vectors and device interrupt vectors. Exception vectors are discussed in more de-
tail in Chapter 19. For the moment, think of them as vectors corresponding to interrupts
generated by the processor rather than by input/output devices. The exception and device
interrupt vector addresses are collected together in the file bios.h.

/* bios.h */

/*--

* ROM BIOS interface information for PCs

*--

*/

#define DB0VEC 0x00 /* divide by zero exception vec */

#define SSTEPVEC 0x01 /* single step exception vector */

#define BKPTVEC 0x03 /* breakpoint exception vector */

#define OFLOWVEC 0x04 /* overflow exception vector */

#define CLKVEC 0x08 /* Clock interrupt vector */

#define KBDVEC 0x09 /* Keyboard interrupt vector */

#define COM1VEC 0x0b /* COM1 interrupt vector */

#define COM2VEC 0x0c /* COM2 interrupt vector */

#define FLOPVEC 0x0e /* Floppy interrupt vector */

#define PRLLVEC 0x0f /* Parallel port interrupt vec */

#define CBRKVEC 0x1b /* Ctrl-Break interrupt vector */

#define BIOSFLG 0x100 /* BIOS flag for intmap */

-- --

Sec. 9.6 PC Interrupt Vectors 147

extern int _panic(); /* exception handler */

extern int cbrkint(); /* ctrl-break handler */

extern int clkint(); /* clock interrupt handler */

Of the seven device-related interrupt vectors listed, only CLKVEC, KBDVEC, and
CBRKVEC are used by PC-Xinu.

9.7 Summary

High-level languages like C cannot always manipulate the machine registers or exe-
cute special instructions to handle interrupts. To avoid writing all interrupt code in as-
sembly language, we have divided the work into two parts. A small assembly language
dispatcher permits the bulk of interrupt handling to be written in a high-level language.
The dispatcher fields interrupts, saves machine registers, and passes control to an ap-
propriate high-level interrupt handler based on entries in a dispatch table. When the
high-level handler returns, control passes back to the dispatcher which reloads registers
and executes special instructions that restore the state and return to the interrupted pro-
gram.

A few rules simplify the design of interrupt handlers. First, the interrupt handler
must not enable interrupts explicitly; it may, however, reschedule to allow other
processes to execute. (Of course, the interrupt routine must insure that global data struc-
tures are in a valid state before rescheduling). Second, because an interrupt routine may
be executed by the null process, it must never call a procedure that will move the calling
process out of the current or ready states. Third, interrupt routines must not leave inter-
rupts disabled too long, or devices will fail to operate correctly. The length of time an in-
terrupt can be delayed depends on the device hardware; a serial port, for example, need
only be serviced before another character arrives.

FOR FURTHER STUDY

Tanenbaum [1976] and Stone [1972] describe interrupt mechanisms on various
machines. Madnick and Donovan [1974] consider the details on an IBM 360 architec-
ture. More information on the details of the 8088 can be found in the vendor’s manual
iAPX 88 BOOK.

Information on interrupt processing in general can be found in Watson [1970]. Lis-
ter [1979] describes dispatching.

-- --

148 Interrupt Processing Chap. 9

EXERCISES

9.1 Rewrite the I/O interrupt dispatcher, minimizing the number of instructions executed by
building a different copy of the dispatcher for each device. How many instructions can you
save per interrupt?

9.2 What might happen if the interrupt dispatcher did not run with interrupts disabled?

9.3 Experiment with PC-Xinu by enabling interrupts upon entry to the interrupt dispatcher. See
what happens if you disable PC-Xinu clock interrupt service. (See the next chapter for infor-
mation on clock interrupts). Are you surprised at how long the system runs before crashing?
Determine exactly why it crashes.

9.4 Suppose the hardware automatically switched context to a process that handled interrupts
whenever one occurred. Would the system be easier or more difficult to design? Would that
process be permitted to reschedule?

9.5 Hardware with a separate interrupt vector for each device works best if the software has one
interrupt routine per device. Why does PC-Xinu use a central interrupt dispatcher? Modify
the code to use device-specific interrupt service routines.

9.6 Calculate how many milliseconds can be spent per interrupt, assuming four devices, each re-
ceiving characters at 19.2 Kbaud (19.2 thousand bits per second, or approximately 1920 char-
acters per second). Roughly, how many 8088 instructions can be executed per interrupt at
this rate?

